Tìm x
\(\frac{x^2-2}{x^2-1}\)=\(\frac{x+2}{x-1}\)
Tìm x : \(\frac{1}{x^2-x}+\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}+\frac{1}{x^2-7x+12}=2-\frac{1}{4-x}\)
Đk:\(x\ne0;1;2;3;4\)
\(pt\Leftrightarrow\frac{1}{x\left(x-1\right)}+\frac{1}{\left(x-1\right)\left(x-2\right)}+\frac{1}{\left(x-2\right)\left(x-3\right)}+\frac{1}{\left(x-3\right)\left(x-4\right)}=2-\frac{1}{4-x}\)
\(\Leftrightarrow\frac{1}{x-4}-\frac{1}{x-3}+\frac{1}{x-3}-\frac{1}{x-2}+\frac{1}{x-2}-\frac{1}{x-1}+\frac{1}{x-1}-\frac{1}{x}=2-\frac{1}{4-x}\)
\(\Leftrightarrow\frac{1}{x-4}-\frac{1}{x}=2-\frac{1}{4-x}\)\(\Leftrightarrow\frac{4}{x\left(x-4\right)}=\frac{2x-7}{x-4}\)
Dễ thấy \(x\ne4\) nên nhân 2 vế của pt vừa biến đổi với \(x-4\) ta dc:
\(\Leftrightarrow\frac{4}{x}=2x-7\Leftrightarrow x\left(2x-7\right)=4\)
\(\Leftrightarrow2x^2-7x=4\Leftrightarrow2x^2-7x-4=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x+1\right)=0\)\(\Leftrightarrow x=-\frac{1}{2}\left(x\ne4\right)\)
1) \(\frac{X+2}{X+3}+\frac{X-1}{X+1}=\frac{2}{X^2+4X+3}+1\)
2)\(\frac{X+1}{X-2}+\frac{2X-1}{X-1}=\frac{2}{X^2-3X+2}+\frac{11}{2}\)
3) Tìm GTLN CỦA -2X2+4X+3
4)\(\frac{X+1}{X-2}+\frac{X}{X+1}-\frac{2X+5}{X^2-X-2}=2\)
5)\(\frac{2X-1}{X+2}+\frac{X}{X+3}-\frac{2X^2+X+1}{X^2+5X+6}=\frac{-9}{2}\)
\(1,\)\(\frac{x+2}{x+3}+\frac{x-1}{x+1}=\frac{2}{x^2+4x+3}+1\)
\(\Rightarrow\frac{\left(x+2\right)\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x-1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}=\frac{2}{\left(x+1\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x+1\right)\left(x+3\right)}\)
\(\Rightarrow\)\(x^2+3x+2+x^2-2x-3=2+x^2+4x+3\)
\(\Rightarrow x^2-3x-6=0\)
.....
\(\frac{x+1}{x-2}+\frac{2x-1}{x-1}=\frac{2}{x^2-3x+2}+\frac{11}{2}\)
\(\Rightarrow\frac{2\left(x+1\right)\left(x-1\right)}{2\left(x-2\right)\left(x-1\right)}+\frac{2\left(2x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)\(=\frac{4}{2\left(x-1\right)\left(x-2\right)}+\frac{22\left(x-1\right)\left(x-2\right)}{2\left(x-1\right)\left(x-2\right)}\)
\(\Rightarrow2x^2-2+4x^2-10x+4=4+22x^2-66x+44\)
.....
\(3,\)\(-2x^2+4x+3\)
\(=-2\left(x^2-2x-\frac{3}{2}\right)\)
\(=-2\left[\left(x^2-2x+1\right)-\frac{5}{2}\right]\)
\(=-2\left(x-1\right)^2+5\)
Đa thức này lớn nhất =5 khi và chỉ khi \(\left(x-1\right)^2\)nhỏ nhất
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
Tìm x
1)\(\frac{x^4+x^2+1}{x^2}=\frac{x^2+x+1}{x}\)
2)\(\frac{x^2}{2}+\frac{18}{x^2}=13\left(\frac{x}{2}-\frac{3}{x^2}\right)\)
3)\(\frac{x^4+1}{\left(x+1\right)^4}=\frac{1}{2}\)
1/ <=> x2 - x -(x2 - x)/x3 = 0
<=> (x2 - x)(1 - 1/x3) = 0
Phần còn lại bạn làm tiếp nha điều kiện x#0
1. Tính:
\(F=\frac{\frac{x^3-x}{x+1}+\frac{2x-2}{1+\frac{x}{2}}}{\frac{x^3-3x^2}{x-3}-\frac{2x^2+8}{x+2}}\)
2.
\(G=\frac{\frac{x^4+1}{x^3-1}-x}{\frac{x}{x^2+x+1}-\frac{2}{x-1}}\)
Tìm giá trị của G. Khi x=2017
Câu 1:
\(F=\frac{\frac{x^3-x}{x+1}+\frac{2x-2}{1+\frac{x}{2}}}{\frac{x^3-3x^2}{x-3}-\frac{2x^2+8}{x+2}}\left(ĐKXĐ:x\ne3;-2;-1\right)\)
\(F=\frac{\frac{x\left(x-1\right)\left(x+1\right)}{x+1}+\frac{2x-2}{1+\frac{x}{2}}}{\frac{x^2\left(x-3\right)}{x-3}-\frac{2x^2+8}{x+2}}\)
\(F=\frac{\frac{\left(x^2-x\right)\left(1+\frac{x}{2}\right)+2x-2}{1+\frac{x}{2}}}{\frac{x^2\left(x+2\right)-2x^2-8}{x+2}}\)
\(F=\frac{\frac{x^2+\frac{x^3}{2}-x-\frac{x^2}{2}+2x-2}{1+\frac{x}{2}}}{\frac{x^3-8}{x+2}}\)
\(F=\frac{\frac{x^2}{2}+\frac{x^3}{2}+x-2}{1+\frac{x}{2}}.\frac{x+2}{x^3-8}\)
Câu 2:
\(G=\frac{\frac{x^4+1}{x^3-1}-x}{\frac{x}{x^2+x+1}-\frac{2}{x-1}}\left(ĐKXĐ:x\ne1\right)\)
\(G=\frac{\frac{x^4+1-x\left(x^3-1\right)}{x^3-1}}{\frac{x\left(x-1\right)-2\left(x^2+x+1\right)}{x^3-1}}\)
\(G=\frac{x+1}{x^3-1}:\frac{x^2-x-2x^2-2x-2}{x^3+1}\)
\(G=\frac{x+1}{-x^2-3x-2}\)
\(G=\frac{x+1}{-\left(x+2\right)\left(x+1\right)}\)
\(G=-\frac{1}{x+2}\)Tại x=2017 ta đc:\(G=-\frac{1}{2+2017}=-\frac{1}{2019}\)
P= \(\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x^2-x}\right)\)
Tìm x để P = -1/2
\(P=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}+\frac{1}{x-1}+\frac{2-x^2}{x^2-x}\right)\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\left(\frac{x^2-1+x+2-x^2}{x\left(x-1\right)}\right)\)
\(=\frac{x\left(x+1\right)}{\left(x-1\right)^2}:\frac{x+1}{x\left(x-1\right)}\)
\(=\frac{x^2}{x-1}\)
Vì \(P=-\frac{1}{2}\)
\(\Leftrightarrow\frac{x^2}{x-1}=-\frac{1}{2}\)ĐKXĐ:\(x\ne1\)
\(\Rightarrow2x^2=-x+1\)
\(\Rightarrow x^2+x^2+x-1=0\)
\(\Rightarrow x\left(x+1\right)+\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow x\left(x+1\right)\left(x-1\right)=0\)
\(\Rightarrow\)\(x=0\) \(\Rightarrow\)\(x=0\)(TM)
\(x+1=0\) \(x=-1\)(TM)
\(x-1=0\) \(x=1\)(KTM)
Vậy để \(P=-\frac{1}{2}\)thì x=0 hoặc x=-1
Tìm x
1)\(\frac{1}{x-1}+\frac{1}{x+2}=\frac{1}{x-2}\)
2)\(\frac{1}{x+1}+\frac{2}{x+3}=\frac{3}{x+2}\)
1/ Ta có : \(\frac{\left(x+2\right)+\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=\frac{1}{x-2}\)
=> \(\frac{2x+1}{\left(x-1\right)\left(x+2\right)}=\frac{1}{x-2}\)
=> \(\left(2x+1\right)\left(x-2\right)=\left(x-1\right)\left(x+2\right)\)
=> \(2x^2-3x-2=x^2+x-2\)
=> \(x^2-4x=0\)
=> \(x\left(x-4\right)=0\)
=> \(\orbr{\begin{cases}x=0\\x-4=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
2/ Ta có: \(\frac{x+3+2\left(x+1\right)}{\left(x+1\right)\left(x+3\right)}=\frac{3}{x+2}\)
=> \(\frac{x+3+2x+2}{\left(x+1\right)\left(x+3\right)}=\frac{3}{x+2}\)
=> \(\frac{3x+5}{\left(x+1\right)\left(x+3\right)}=\frac{3}{x+2}\)
=> \(\left(x+1\right)\left(x+3\right).3=\left(3x+5\right)\left(x+2\right)\)
=> \(3x^2+12x+9=3x^2+11x+10\)
=> \(x=1\)
Tìm x biết: \(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2\)=\(\left(x+4\right)^2\)
Đặt \(t=\left(x+\frac{1}{x}\right)^2\)\(\Rightarrow\)\(x^2+\frac{1}{x^2}=t-2\)điều kiện t>=0,x # 0
Phương trình trở thành
8t +4(t-2)2 - 4(t-2)2t =(x+4)2
8t + 4t2 - 16t + 16 -4t3 + 16t2 - 16t=(x+4)2
-4t3 + 20t2 -24t=x2 +8x
-4t(t2 -5t +6)=x(x+8)
-4t(t-2)(t-3)=x(x+8)
Mình chỉ giúp dược tới đó
Cho bt P=\(^{\frac{x^2+x}{x^2-2x+1}:\left(\frac{x +1}{2}+\frac{1}{x-1}+\frac{2-x^2}{x^2-x}\right)}\)
Tìm GTNN của P khi x>1
\(\frac{x}{2+\frac{x}{2+\frac{x}{\frac{................................}{2+\frac{x}{1+\sqrt{1+x}}}}}}\)=44. tìm x
1 tìm x biết ;
a, 0-|x + 1| = 5
b, 2 - | \(\frac{3}{4}\)- x | = \(\frac{7}{12}\)
c, 2 | \(\frac{1}{2}\)x - \(\frac{1}{3}\)| - \(\frac{3}{2}\)= \(\frac{1}{4}\)
d, | x - \(\frac{1}{3}\)| = \(\frac{5}{6}\)
e, \(\frac{3}{4}\)- 2 | 2x - \(\frac{2}{3}\)| = 2
f, \(\frac{2x-1}{2}\)= \(\frac{5+3x}{3}\)
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)