Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Thị Trà My
Xem chi tiết
Cao Thị Trà My
Xem chi tiết
Quang Đẹp Trai
Xem chi tiết
Akai Haruma
31 tháng 5 2023 lúc 10:56

Bài này có đúng là của lớp 7 không bạn?

nguyễn huy hoàng
Xem chi tiết
thành piccolo
Xem chi tiết
ghdoes
Xem chi tiết
Pham Quoc Cuong
Xem chi tiết
Chàng trai bóng đêm
14 tháng 5 2018 lúc 22:16

Ta dễ dàng chứng minh BĐT

\(x^4+y^4\ge x^3y+xy^3\)

\(\Rightarrow2\left(x^4+y^4\right)\ge x^4+y^4+x^3y+xy^3=\left(x+y\right)\left(x^3+y^3\right)\)

\(\Rightarrow\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\)

Chứng minh tương tự, cộng theo vế, ta có:

\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=\frac{2\left(x+y+z\right)}{2}=2\)

Dấu "=" xảy ra khi x=y=z=1/3

dbrby
Xem chi tiết
Trần Thanh Phương
16 tháng 8 2019 lúc 20:14

Áp dụng bất đẳng thức Cauchy :

\(\frac{x^4}{y^2\left(x+z\right)}+\frac{y^2}{2x}+\frac{x+z}{4}\ge3\sqrt[3]{\frac{x^4\cdot y^2\cdot\left(x+z\right)}{y^2\cdot\left(x+z\right)\cdot2x\cdot4}}=3\sqrt[3]{\frac{x^3}{8}}=\frac{3x}{2}\)

Tương tự ta cũng có :

\(\frac{y^4}{z^2\left(x+y\right)}+\frac{z^2}{2y}+\frac{x+y}{4}\ge\frac{3y}{2}\)

\(\frac{z^4}{x^2\left(y+z\right)}+\frac{x^2}{2z}+\frac{y+z}{4}\ge\frac{3z}{2}\)

Cộng theo vế ta được :

\(VT+\left(\frac{y^2}{2x}+\frac{z^2}{2y}+\frac{x^2}{2z}\right)+\frac{2\left(x+y+z\right)}{4}\ge\frac{3x}{2}+\frac{3y}{2}+\frac{3z}{2}\)

\(\Leftrightarrow VT+\frac{1}{2}\left(\frac{y^2}{x}+\frac{z^2}{y}+\frac{x^2}{z}\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow VT+\frac{1}{2}\cdot\frac{\left(x+y+z\right)^2}{x+y+z}+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow VT+\frac{1}{2}\left(x+y+z\right)+\frac{1}{2}\left(x+y+z\right)\ge\frac{3}{2}\left(x+y+z\right)\)

\(\Leftrightarrow VT\ge\frac{x+y+z}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

Akai Haruma
16 tháng 8 2019 lúc 21:35

Lời giải:

Áp dụng BĐT Cauchy-Schwarz:

\(\text{VT}=\frac{(\frac{x^2}{y})^2}{x+z}+\frac{(\frac{y^2}{z})^2}{x+y}+\frac{(\frac{z^2}{x})^2}{y+z}\geq \frac{\left(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\right)^2}{x+z+x+y+y+z}\)

Tiếp tục áp dụng:

\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}\geq \frac{(x+y+z)^2}{y+z+x}=x+y+z\)

Do đó: \(\text{VT}\geq \frac{(x+y+z)^2}{x+z+x+y+y+z}=\frac{x+y+z}{2}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z$

Nguyễn Tùng
Xem chi tiết
Đặng Ngọc Quỳnh
24 tháng 9 2020 lúc 18:32

Trước hết ta sẽ chứng minh bổ đề phụ sau, với mọi a,b dương ta có: 

\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

Thật vậy  biến đổi tương đương ta đưa về \(\left(a-b\right)^2\left(a^2+ab+b^2\right)=0\)

BĐT này luôn đúng, thế thì

\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)

\(\Rightarrow\left(a^4+b^4\right)\ge\frac{\left(a+b\right)\left(a^3+b^3\right)}{2}\)

\(\frac{a^4+b^4}{a^3+b^3}\ge\frac{a+b}{2}\)

Như vậy ta có:

\(\hept{\begin{cases}\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\\\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2}\\\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\end{cases}}\)

\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=1\)

Dấu '=' xảy ra khi x=y=z=1/3

Khách vãng lai đã xóa
Tran Le Khanh Linh
24 tháng 9 2020 lúc 18:38

Đặng Ngọc Quỳnh  không cần a,b rồi suy ra x,y, quá lòng vòng

Bạn tham khảo cách làm tại đây

 Câu hỏi của Pham Quoc Cuong - Toán lớp 8 - Học toán với OnlineMath

Khách vãng lai đã xóa