Từ điểm A nằm ngoài (O) vẽ hai tiếp tuyến AB,AC và cát tuyến AEF ( AE < AF và tia AF nằm giữa hai tia AO, AC. GỌI I là trung điểm EF. Qua A kẻ đường thẳng song song CF cắt BF. CM tứ giác ABJO nội tiếp
Từ điểm A nằm ngoài (O) kẻ 2 tiếp tuyến AB, AC, cát tuyến AEF ( AF nằm giữa AO và AC, AE < AF ). I là trung điểm của EF. Qua I kẻ đường thẳng song song với CF cắt BC tại D, DE cắt AO tại K. CMR : KBOD nội tiếp
DI//CF
=>góc EID=góc EFC=góc EBD
=>EBID nội tiếp
=>góc EDB=góc EIB
mà góc EIB=góc KOB
nên góc EDB=góc KOB
=>góc KDB=góc KOB
=>KBOD nộitiếp
Từ điểm a nằm ngoài đường (O) vẽ hai tiếp tuyến AB,AC và cát tuyến AEF (B,C là tiếp điểm,tia AF nằm giữa hai tia AB và AO,E nằm giữa A và F).
Gọi I là giao điểm của AO và BC K là trung điểm EF
a) chứng minh ABOC nội tiếp
b) Biết OB=3cm,BOC=120.tính độ dài cung tròn BEC
c) đường thẳng đi qua K song song với BF cắt BC ở M .Chứng minh rằng góc KMC = gócKEC
d) Tia FM cắt AB tại N .chứng minh N là trung điểm AB
làm câu d hộ mình cái
d: Gọi J là giao cùa EM với BF
K là trung điểm của EF
=>OK vuông góc EF
=>góc OKA=90 độ
góc OKA=góc OBA=90 độ
=>ABKO nội tiếp
=>A,B,K,O,C cùng thuộc 1 đường tròn
=>góc A1=góc C2
EMKC nội tiếp
=>góc E1=góc C2
=>góc A1=góc E1
=>EM//AB
=>EJ//AB
=>KMlà đường trung bình của ΔKJF
=>M là trung điểm của EJ
=>ME=MJ
EJ//AB
nên ME/AN=FM/FN=MJ/NB
mà ME=MJ
nên AN=NB
Cho(O;R). Từ điểm A bên ngoài đường tròn vẽ hai tiếp tuyết AB, AC và dây AEF (AF nằm giữa AO và AC, AE<AF). I là trung điểm EF.
a/CM AB^2=AE.AF
b/CM tứ giác ABOC, AOIC nội tiếp.
c/ Qua I kẻ đường thẳng //CF cắt BC tại D, DE cắt AO tại M. chứng minh tứ giác MBOD nội tiếp.
Chỉ cần giải ý c/. Mình cần gấp. Cảm ơn
Cho đường tròn (O) và điểm A nằm ngoài đường tròn (O). Từ A vẽ 2 tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của AO và BC. Qua A vẽ cát tuyến ADE của đường tròn (O) (D và E thuộc đường tròn (O)) sao cho AE cắt HB tại I. Gọi M là trung điểm của dây cung DE.
a)Chứng minh: tứ giác OHDE nội tiếp đường tròn
b) Trên tia đối của tia HB lấy điểm F sao cho H là trung điểm của DF. Tia AO cắt đường thẳng EF tại K. Chứng minh IK song song DF
Từ điểm A nằm ngoài đường tròn (O). kẻ tiếp tuyến AB,AC với đường tròn (O), (B,C là tiếp điểm)
a) Chứng minh tứ giác ABOC nội tiếp
b) Từ A kẻ cát tuyến AEF đến (O), (AE<AF). Chứng minh \(AC^2=AE.AF\)
C) OA cắt BC tại H, M là trung điểm HB, tia OM cắt AB tại K, Gọi \(\widehat{AOB}=\alpha\)
Chứng minh \(cos^2\alpha=\dfrac{KB}{KA}\)
Từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AB, AC (B và C là 2 tiếp điểm). Vẽ cát tuyến ADE đến (O) (tia AD nằm giữa 2 tia AB và AO). Gọi I là trung điểm của DE.
a) Chứng minh tứ giác OBAC nội tiếp được và OI vuông góc với DE. b) Chứng minh AB = AD, AE.
c) Kẻ dường thẳng qua D vuông góc với OC tại H và cắt BC tại K. Chứng minh tứ giác BDKI nội tiếp được.
Từ điểm A ở ngoài đường tròn (O;R) với (Oa>2R) vẽ hai tiếp tuyến AB;AC đến (O)(B;C là tiếp điểm) và cắt tuyến ADE đến (O) (D nằm giữa A và E; tia AE nằm giữa hai tia AO và AB) OA cắt BC tại H;I là trung điểm DE
a/Chứng minh tứ giác AIOC nội tiếp và OA vuông góc BC
b/Chứng minh AB2 = AD.AE và góc EDO= góc EHO
c/Qua D vẽ đường thẳng song song BE cắt AB;BC tại M và N.Chứng minh MD=ME
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
Từ điểm A ở ngoài đường tròn (O;R) với (Oa>2R) vẽ hai tiếp tuyến AB;AC đến (O)(B;C là tiếp điểm) và cắt tuyến ADE đến (O) (D nằm giữa A và E; tia AE nằm giữa hai tia AO và AB) OA cắt BC tại H;I là trung điểm DE
a/Chứng minh tứ giác AIOC nội tiếp và OA vuông góc BC
b/Chứng minh AB2 = AD.AE và góc EDO= góc EHO
c/Qua D vẽ đường thẳng song song BE cắt AB;BC tại M và N.Chứng minh MD=ME
a: Xét tứ giác AIOC có \(\widehat{AIO}+\widehat{ACO}=180^0\)
nên AIOC là tứ giác nội tiếp
Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
mà OB=OC
nên OA là đường trung trực của BC
hay OA⊥BC
b: Xét ΔABD và ΔAEB có
\(\widehat{ABD}=\widehat{AEB}\)
\(\widehat{BAD}\) chung
Do đó: ΔABD\(\sim\)ΔAEB
Suy ra: AB/AE=AD/AB
hay \(AB^2=AD\cdot AE\)
Từ điểm A nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến AB, AC với đường tròn (B, C là hai tiếp điểm). Trên nửa mặt phẳng bờ là đường thẳng AO chứa điểm B, vẽ cát tuyến AMN với đường tròn (O) (AM<AN, MN không đi qua O). Gọi I là trung điểm của MN. 1) Chứng minh: Tứ giác AIOC là tứ giác nội tiếp 2) Gọi H là giao điểm của AO và BC. Chứng minh AH.AO=AM.AN và tứ giác MNOH là tứ giác nội tiếp. 3) Qua M kẻ đường thẳng song song với BN, cắt AB và AC theo thứ tự tại E và F. Chứng minh rằng M là trung điểm của EF.