tìm số tự nhiên a biết 231 + a chia hết cho 7 và 321 + a chia hết cho 11
tìm số tự nhiên a biết 231 + a chia hết cho 7 và 321 + a chia hết cho 11 ai đúng đầu tiên cho 2 tick (có 2 nick)
Ta có:231+a chia hết cho 7
mà 231 chia hết cho 7 suy ra a chia hết cho 7,suy ra a-42 chia hết cho 7
Ta lại có:321+a chia hết cho 11
mà 321 chia 11 dư 2 suy ra a chia 11 dư 9, suy ra a-9 chia hết cho 11, suy ra a-9-33 chia hết cho 11,suy ra a-42 chia hết cho 11
suy ra a-42 chia hết cho 11 và 7
suy ra a-42 chia hết cho 77(vì 11 và 7 nguyên tố cùng nhau)
suy ra a-42=77k
suy ra a=77k+42(k thuộc N)
Nhớ k nhé!
a, Tìm số tự nhiên a nhỏ nhất biết a: 7 dư 4 , a : 12 dư 11 và a: 15 thiếu 4
b, tìm stn a biết rằng 452 chia cho a dư 32 còn 321 chia a dư 21
c, tìm stn a nhỏ nhất sao cho khi chia a dư 1 và cho4 dư 2 chia cho 5 dư 3 chia cho 6 dư 4 và chia hết cho 11
làm nhaanh hộ mình nhé các bạn , cảm ơn nhiều
tìm số tự nhiên a biết rằng : 231 chia hết cho a và 15<a<230
Tìm số tự nhiên a biết rằng 231 chia hết cho a và 15 < a < 230
Các bội của 231 :
77 ; 1 11
Vì 15 < a < 230 nên a chỉ có thể là 77
Vậy ta có a = 77
231 chia hết cho a => a c Ư(231) = { 1 ; 3 ; 7 ; 11 ; 21 ; 33 ; 77 ; 231}
Vì 15 < a < 230 nên a c {21 ; 33 ; 77}
tìm số tự nhiên a :biết rằng a chia hết cho 231 và 15<a<230
Không có vì các số chia hết cho 231 là 0;231;462;.... mà 15 <a<230 nên ko có
tìm số tự nhiên a biết rằng :231 chia hết cho 3 và 15<a<230
Tìm số tự nhiên a biết rằng a chia cho 7 dư 3; a chia cho 9 dư 1; a chia hết cho 11 và a nằm trong khoảng từ 350 đến 500.
Lời giải:
Theo đề:
$a-3\vdots 7\Rightarrow a-10\vdots 7$
$a-1\vdots 9\Rightarrow a-10\vdots 9$
$\Rightarrow a-10\vdots BCNN(7,9)$
$\Rightarrow a-10\vdots 63$
Đặt $a-10=63k$ với $k$ nguyên
$a=63k+10$
$350\leq a\leq 500$
$350\leq 63k+10\leq 500$
$\frac{340}{63}\leq k\leq \frac{490}{63}$
Vì $k$ nguyên nên $k\in \left\{6; 7\right\}$
Nếu $k=6$ thì $a=388$ không chia hết cho $11$ (loại)
Nếu $k=7$ thì $a=451$ (tm)
Vậy........
Bài 3: Tìm số tự nhiên x, biết:
126 chia hết cho x, 210 chia hết cho x, biết 15<x<30
Bài 4: Tìm số tự nhiên a lớn nhất thoả mãn:
a) 320 chia hết cho a và 480 chia hết cho a, b) 360 chia hết cho a và 600 chia hết cho a
Bài 5: Tìm số tự nhiên a lớn hơn 25, biết rằng các số 525; 875 và 280 đều chia hết cho a
Bài 3
126 ⋮ x và 210 ⋮ x
⇒ x ∈ ƯC(126; 210)
Ta có:
126 = 2.3².7
210 = 2.3.5.7
⇒ ƯCLN(126; 210) = 2.3.7 = 42
⇒ ƯC(126; 210) = Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
Mà 15 < x < 30
⇒ x = 21
Bài 4
a) 320 ⋮ a; 480 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(320; 480)
Ta có:
320 = 2⁶.5
480 = 2⁵.3.5
⇒ a = ƯCLN(320; 480) = 2⁵.5 = 160
b) 360 ⋮ a; 600 ⋮ a và a là số lớn nhất
⇒ a = ƯCLN(360; 600)
Ta có:
360 = 2³.3².5
600 = 2³.3.5²
⇒ a = ƯCLN(360; 600) = 2³.3.5 = 120
Bài 5
525 ⋮ a; 875 ⋮ a; 280 ⋮ a
⇒ a ∈ ƯC(525; 875; 280)
Ta có:
525 = 3.5².7
875 = 5³.7
280 = 2³.5.7
⇒ ƯCLN(525; 875; 280) = 5.7 = 35
⇒ x ∈ ƯC(525; 875; 280) = Ư(35) = {1; 5; 7; 35}
Mà x > 25
⇒ x = 35
Tìm số tự nhiên a nhỏ nhất biết a chia 3 dư 2 ,chia 7 dư 3, chia 11 dự 9 và chia hết cho 5.
Lời giải:
Theo bài ra:
$a-2\vdots 3; a-3\vdots 7$
$\Rightarrow a-2+3.2\vdots 3; a-3+7\vdots 7$
$\Rightarrow a+4\vdots 3$ và $a+4\vdots 7$
$\Rightarrow a+4=BC(3,7)\Rightarrow a+4\vdots BCNN(3,7)$
$\Rightarrow a+4\vdots 21$.
Đặt $a=21k-4$ với $k$ tự nhiên.
Vì $a$ chia $11$ dư $9$ nên:
$a-9\vdots 11\Rightarrow 21k-4-9\vdots 11$
$\Rightarrow 21k-13\vdots 11\Rightarrow 21k-13+11.5\vdots 11$
$\Rightarrow 21k+42\vdots 11$
$\Rightarrow 21(k+2)\vdots 11\Rightarrow k+2\vdots 11$
$\Rightarrow k=11m-2$ với $m$ tự nhiên.
Vậy $a=21k-4=21(11m-2)-4=231m-46$
Để $a$ là số tự nhiên nhỏ nhất thì $m$ là số tự nhiên nhỏ nhất sao cho $231m-46\geq 0$
$\Rightarrow m\geq 1$.
$\Rightarrow m$ nhỏ nhất bằng 1.
$\Rightarrow a$ nhỏ nhất bằng: $231.1-46=185$