Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
CHU ANH TUẤN
Xem chi tiết
Tài Tuệ Lê
Xem chi tiết
Ngô Bá Hùng
26 tháng 4 2023 lúc 23:27

def is_coprime(a, b):
    """Hàm ktra a và b có phải là nguyên tố cùng nhau"""
    while b:
        a, b = b, a % b
    return a == 1

n = int(input("Nhập stn n: "))
count = 0

for i in range(1, n+1):
    if is_coprime(i, n):
        count += 1

print(f"Số lượng số nguyên tố cùng nhau với n là {count}.")

Bùi Nguyễn Ngọc Anh
Xem chi tiết
Bùi Nguyễn Ngọc Anh
14 tháng 2 2022 lúc 14:35

làm ơi cíuuuu

 

Như Nguyệt
14 tháng 2 2022 lúc 14:38

Tham Khảo:

Nguyễn Lê Phước Thịnh
14 tháng 2 2022 lúc 14:40

#include <bits/stdc++.h>

using namespace std;

long long n,m,x,i;

//chuongtrinhcon

long long ucln(long long a,long long b)

{

if (b==0) return(a);

else return(ucln(b,a%b));

}

//chuongtrinhchinh

int main()

{

cin>>m>>n;

x=ucln(m,n);

for (i=1; i<=x; i++) if (x%i==0) cout<<i<<" ";

cout<<endl;

cout<<"Uoc chung lon nhat="<<x<<endl;

cout<<"Boi chung nho nhat="<<(m*n)/x<<endl;

return 0;

}

Barbie
Xem chi tiết
Nhók Bạch Dương
17 tháng 11 2017 lúc 12:54

Vì 396 : a dư 30 nên a > 30

Theo bài ra ta có : 

396 chia a dư 30 

=> ( 396 - 30 ) \(⋮\)a => 366  \(⋮\)a

Lại có : 473 chia a dư 23

=> ( 473 - 23 ) \(⋮\)a => 450 \(⋮\)a

Từ (1) và (2) => a \(\in\)ƯC( 366;450)

Ta có : 366 = 2 .3 . 61

             450 = 2 . 32 . 52

Khi đó ƯCLN( 366;450 ) = 2 . 3 = 6

=> ƯC( 366;450 ) = Ư(6) = { 1 ;2 ; 3 ; 6 }

Vậy a \(\in\){1;2;3;6}

Ice Wings
Xem chi tiết
Trần Thị Loan
4 tháng 12 2015 lúc 21:56

Gọi ƯCLN(A; B) = d

=> A ; B chia hết cho d

=> m + n chia hết cho d  và B = m+ n2 chia hết cho d 

m + n chia hết cho d => m(m+ n) chia hết cho d => m+ mn chia hết cho d

=> (m+ mn) - (m2 + n2) chia hết cho d => n(m - n) chia hết cho d

Nhận xét: n và m - n nguyên tố cùng nhau vì 

Gọi ƯCLN(n;m - n) = d' => n ; m - n chia hết cho d' => n; m chia hết cho d' => d' là ước chung của m; n

Mà theo bài cho ƯCLN(m; n) = 1 nên d' = 1

Vậy n; m - n nguyên tố cùng nhau 

Ta có n(m - n) chia hết cho d => n chia hết cho d hoặc m - n chia hết cho d

+) Trường hợp:  n chia hết cho d : Ta có m + n chia hết cho d nên m chia hết cho d => d là ước chung của m ; n mà ƯCLN(m; n) = 1

=> d = 1 

+) Trường hợp:  m - n chia hết cho d: Ta có m + n chia hết cho d => (m - n) + (m + n) chia hết cho d => 2m chia hết cho d

- Khi m lẻ  => 2 chia hết cho d hoặc m chia hết cho d

Nếu 2 chia hết cho d mà d lớn nhất => d = 2

Nếu m chia hết cho d , theo trường hợp trên => n chia hết cho d => d = 1

- Khi m chẵn, vì m; n nguyên tố cùng nhau nên n lẻ . Lại có 2n chia hết cho d => 2 chia hết cho d hoặc n chia hết cho d

Quay lại trường hợp như trên => d = 2 hoặc 1

Vậy d = 1 hoặc d = 2

 

Ice Wings
Xem chi tiết
Toán Vui
Xem chi tiết
Khánh Hạ
1 tháng 3 2018 lúc 20:38

Gọi ƯCLN(A; B) = d

=> A ; B chia hết cho d

=> m + n chia hết cho d  và B = m+ n2 chia hết cho d 

m + n chia hết cho d => m(m+ n) chia hết cho d => m+ mn chia hết cho d

=> (m+ mn) - (m+ n2) chia hết cho d => n(m - n) chia hết cho d

Nhận xét: n và m - n nguyên tố cùng nhau vì 

Gọi ƯCLN(n;m - n) = d' => n ; m - n chia hết cho d' => n; m chia hết cho d' => d' là ước chung của m; n

Mà theo bài cho ƯCLN(m; n) = 1 nên d' = 1

Vậy n; m - n nguyên tố cùng nhau 

Ta có n(m - n) chia hết cho d => n chia hết cho d hoặc m - n chia hết cho d

+) Trường hợp:  n chia hết cho d : Ta có m + n chia hết cho d nên m chia hết cho d => d là ước chung của m ; n mà ƯCLN(m; n) = 1

=> d = 1 

+) Trường hợp:  m - n chia hết cho d: Ta có m + n chia hết cho d => (m - n) + (m + n) chia hết cho d => 2m chia hết cho d

- Khi m lẻ  => 2 chia hết cho d hoặc m chia hết cho d

Nếu 2 chia hết cho d mà d lớn nhất => d = 2

Nếu m chia hết cho d , theo trường hợp trên => n chia hết cho d => d = 1

- Khi m chẵn, vì m; n nguyên tố cùng nhau nên n lẻ . Lại có 2n chia hết cho d => 2 chia hết cho d hoặc n chia hết cho d

Quay lại trường hợp như trên => d = 2 hoặc 1

Vậy d = 1 hoặc d = 2

Nguyễn Hưng Phát
1 tháng 3 2018 lúc 20:40

Gọi UCLN(A,B)=d

Ta có:\(\hept{\begin{cases}A⋮d\\B⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}m+n⋮d\\m.m+n.n⋮d\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(m+n\right)\left(m-n\right)⋮d\\m.m+n.n⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}m.m-n.n⋮d\\m.m+n.n⋮d\end{cases}}\)\(\Rightarrow\left(m.m-n.n\right)+\left(m.m+n.n\right)⋮d\)

\(\Rightarrow2.m.m⋮d\Rightarrow m.m⋮d\Rightarrow m⋮d\) vì UCLN(m,d)=1

\(\Rightarrow n⋮d\)

\(\Rightarrow d\inƯ\left(m,n\right)=1\)

Vậy UCLN((A,B)=1

Trang Nguyễn
Xem chi tiết
nguyen thanh quyen
Xem chi tiết