Tìm số nguyên tố sao cho p+1 là số chình phương
Câu 3
1. Tìm số nguyên tố x,y sao cho :49x+11y=224
2.Tìm số nguyên dương n để n2+2019 là 1 số chình phương
a,tìm n để n^2+2006 là 1 số chình phương
b,cho n là số nguyên tố lớn hơn 3.hỏi n^2+2006 là số nguyên tố hay hợp số
a) Vi n2 + 2006 la so chinh phuong nen n2 + 2006 = a2 suy ra n2 - a2 = 2006 hay (n+a)x(n-a) = 2006
Ta có a - n + n + a = 2a chia hết cho 2 và a+n - a+n = 2n chia hết cho 2
Suy ra (ã-n)x(ã+n) có cùng tính chẵn lẻ
TH1 : a-n và a+n cũng là số lẻ suy ra (a+n) x (a-n) là số lẻ mà 2006 là số chẵn (loại)
TH2 : a-n và a+n cũng là số chẵn suy ra (a-n)x(a+n) là số chẵn
suy ra a-n chia hết cho 2 và a+n chia hết cho 2 nên (a-n)x(a+n) chia hết cho 4
mà 2006 ko chia hết cho 4 nè ko có giá trị nào của n thỏa mãn đề bài
1.Tìm số nguyên n sao cho n^2+3 là số chính phương
2.Tìm số tự nhiên n để n^2+3n+2 là số nguyên tố
3.Tìm số nguyên tố p để p+1 là số chính phương
Tìm số nguyên tố ab sao cho ab + ba là số nguyên tố
Tìm các số có 4 chữ số sao mỗi số vừa là số chính phương vừa là số lập phương
Tìm các số có 4 chữ số sao mỗi số vừa là số chính phương vừa là số lập phương
Gọi số chính phương phải tìm là
abcd
(a, b, c, d ∈ N, 0 ≤ b, c, d ≤ 9, 0 < a ≤ 9)
Ta có:
abcd
= x^2 (1)
= y^3 (1)
Với x, y ∈N và 31< x < 100; 10≤ y ≤ 21 (2)
Từ (1) ta suy ra y cũng là một số chính phương và từ (2) ta suy ra y = 16
Do đó :
abcd
= 16^3
= 4096 = 64^2
Vậy số phải tìm là 4096
Tìm số nguyên tố P sao cho 2P+1 là một số lập phương
Đặt \(2P+1=a^3\in N\)
\(\Rightarrow2P=a^3-1=\left(a-1\right)\left(a^2+a+1\right)\)
Với \(P=2\Leftrightarrow2P+1=2\cdot2+1=5\left(ktm\right)\)
Với \(P>2\)
Do P>2 thì P lẻ
Mà 2P chẵn, \(a^2+a+1=a\left(a+1\right)+1\Rightarrow a^2+a+1\) lẻ
Do đó \(a-1=2\)
\(\Leftrightarrow a=3\\ \Leftrightarrow P=13\left(tm\right)\)
tìm số nguyên tố p sao cho 4p+1 là số chính phương
tìm số nguyên tố p để 4p + 1 là số chính phương
tìm số nguyên tố p sao cho 4p+1 là số chính phương
voi p=2 ta có 4p+1 =9 là số chính phương nên thoã mãn
voi p=3 ta có 4p+1 =13 không là số chính phương nênloại
Với p>3 thì ví p là số chính phương nên p không chia hết cho 3 suy ra p=3k+1 hoặc p=3k+2 với k thuộc N*
Nếu p=3k+1 thì 4p+1 = 12k+5 chia 3 dư 2 mà số chính pgương chia cho 3 chỉ dư 0 hoặc 1 nên loại
Nếu p=3k+2 thì 4p+1 = 12k+9 chia hết cho 3 dư 2 mà không chia hết cho 9 số chính phương chia hết cho 3 cthì phải chia hết cho 9 nên loại
Vậy p=2
a) Tìm p là số tự nhiên sao cho p+1;p+2;p+4 đều là số nguyên tố.
b) Tìm số nguyên tố p sao cho 2p2+1 cũng là số nguyên tố.
c) Tìm số nguyên tố p sao cho p+10 và p+14 cũng là số nguyên tố
b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
Tìm số nguyên tố p sao cho 7p+1 là một số lập phương.
Đặt 7p+1=n3(n>2)(n\(\inℕ\))
=>7p=(n-1)n(n+1)=(n-1)(n2+n+1) *
Xét p=2=>loại
Xét p>2=>p là số nguyên tố lẻ
Mà n2+n+1=n(n+1)+1 luôn lẻ
Từ * ta có \(\hept{\begin{cases}n-1=7\\n^2+n+1=p\end{cases}}\Leftrightarrow\hept{\begin{cases}n=8\\p=31\end{cases}}\)
(THOẢ MÃN)