\(\frac{1}{1.3}\)+\(\frac{1}{3.5}\)+\(\frac{1}{5.7}\)+.........+\(\frac{1}{47.49}\)=\(\frac{1}{x}\)
Rút gọn Bt
A= \(\frac{1}{1.3}-\frac{1}{3.5}-\frac{1}{5.7}-.......-\frac{1}{47.49}-\frac{1}{49.51}\)
theo công thức, ta tính đc:
A = 1- 1/3 + 1/3 - 1/5 + 1/5 -1/7 +..... + 1/49 - 1/51
=> A bằng 1- 1/51 ( các cặp phân số đối nhau thì lược bỏ như - 1/3 và + 1/3 )
theo bài ra ta có:
A=1-1/3+1/3-1/5+1/5-1/7+......+1/47-1/49+1/49-1/51
A=1-1/51
tim x : \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}=\frac{1}{x}\)
=1-1/3+1/3-1/5+.....+1/47-1/49
=1-1/49
=)x=49
...kcho minh nha
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}=\frac{1}{x}\)
\(\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\right)=\frac{1}{x}\)
\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{37}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{1}{2}\left(1-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{1}{2}\cdot\frac{48}{49}=\frac{1}{x}\)
\(\frac{1}{x}=\frac{24}{49}\)
=>x=49/24
Tìm x:
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}=\frac{1}{x}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}=\frac{1}{x}\\ \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\right)=\frac{1}{x}\\ \frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{45}-\frac{1}{47}+\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{1}{2}.\left(1-\frac{1}{49}\right)=\frac{1}{x}\\ \frac{1}{2}-\frac{1}{98}=\frac{1}{x}\\ \frac{49-1}{98}=\frac{1}{x}\\ \frac{24}{49}=\frac{1}{x}\\ \Rightarrow24x=49\\ x=\frac{49}{24}\\ x=2\frac{1}{24}\)
Cho \(\frac{1}{1.3}+\frac{1}{3.5}+....+\frac{1}{47.49}=\frac{1}{x}\). Tìm |x|
\(1\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}=\frac{1}{x}\)
\(1\frac{1}{3}+\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}\right)=\frac{1}{x}\)
\(\frac{4}{3}+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{4}{3}+\frac{1}{2}\left(\frac{1}{3}-\frac{1}{49}\right)=\frac{1}{x}\)
\(\frac{4}{3}+\frac{1}{2}.\frac{46}{147}=\frac{1}{x}\)
\(\frac{4}{3}+\frac{23}{147}=\frac{1}{x}\)
\(\frac{73}{49}=\frac{1}{x}\)
=>\(x=\frac{49.1}{73}=\frac{49}{73}\Rightarrow\)I x I= \(\frac{49}{73}\)
TÍNH
K = \(\frac{1}{1.3}+\frac{1}{3.5}+...........+\frac{1}{47.49}\)
\(K=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{49}\right)\)
\(=\frac{1}{2}.\frac{48}{49}\)
\(=\frac{24}{49}\)
\(K\times2=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\)
\(K\times2=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\)
\(K\times2=\frac{48}{49}\)
\(K=\frac{48}{49}\div2=\frac{24}{49}\)
\(K=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+..........+\frac{2}{47.49}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+........+\frac{1}{47}-\frac{1}{49}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{49}\right)\)
\(=\frac{1}{2}.\frac{48}{49}\)
\(=\frac{24}{49}\)
Tính :
\(P=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}\)
\(P=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}\)
\(P=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{47}-\frac{1}{49}\right)\)
\(P=\frac{1}{2}.\left(1-\frac{1}{49}\right)\)
\(P=\frac{1}{2}.\frac{48}{49}\)
\(P=\frac{24}{49}\)
\(P=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{47.49}\)
\(P=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\right)\)
\(P=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)\)
\(P=\frac{1}{2}.\left(1-\frac{1}{49}\right)\)
\(P=\frac{1}{2}.\frac{48}{49}\)
\(P=\frac{24}{49}\)
Tim x
(2x+1)-\(\frac{1}{49}\)=\(\frac{4}{3.5}+\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{47.49}\)
Tìm x biết
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)
b) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)
c) \(\frac{x-1}{2017}+\frac{x-2}{2016}=\frac{x-3}{2015}+\frac{x-4}{2014}\)
d) \(\frac{x+1}{2017}+\frac{x+2}{2016}=\frac{x+3}{2015}+\frac{x+4}{2014}\)
\(b)\) \(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{97.101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{97}-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(1-\frac{1}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(\frac{100}{101}=\frac{2x+4}{101}\)
\(\Leftrightarrow\)\(100=2x+4\)
\(\Leftrightarrow\)\(2x=96\)
\(\Leftrightarrow\)\(48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
\(a)\) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{47.49}=\frac{24}{x+1}\)
\(\Leftrightarrow\)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{47.49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{47}-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(1-\frac{1}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(\frac{48}{49}=\frac{48}{x+1}\)
\(\Leftrightarrow\)\(49=x+1\)
\(\Leftrightarrow\)\(x=48\)
Vậy \(x=48\)
Chúc bạn học tốt ~
tìm x : \(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)\)
\(\frac{1}{x}-\frac{1}{999}=\frac{1}{2}.\frac{98}{99}\)
\(\frac{1}{x}-\frac{1}{9999}=\frac{49}{99}\)
\(\frac{1}{x}=\frac{49}{99}+\frac{1}{9999}\)
\(\frac{1}{x}=\frac{50}{101}\)
\(x=1:\frac{50}{101}\)
\(x=\frac{101}{50}\)
Vậy \(x=\frac{101}{50}\)