1.cho x,y>0 và 4/x^2+1/y^2=2. Cm x^2-4xy+6y^2+2x>=6
Cho 2x^2 +5y^2+4xy-6y+3=0.Hãy tính B=2021*(x+y)^4+2022*(x+2)^6
Cho x,y > 0 và \(\frac{1}{x^2}+\frac{1}{y^2}=2\)
Chứng minh rằng \(x^2-4xy+6y^2+2x\ge6\)
Ta có:\(x^2-4xy+6y^2+2x+4\)
\(=\left(x-2y\right)^2+\left(x+x+\frac{8}{x^2}\right)+\left(2y^2+\frac{2}{y^2}\right)\)
\(\ge0+6+4=10\)
\(\Rightarrow x^2-4xy+6y^2+2x\ge10-4=6\)
Dấu bằng xảy ra khi x=2 và y=1.
Giải phương trình:
a) x2 +3y2 +4xy+2x+4y=0
b) x2 -2(3y+1)x+8y2 +6y +6 =0
c) x2 -(y+4)x+4y-25=0
d) x3 +2x2y +xy+2y2 -15 =0
Cho hàm số \(y=\dfrac{1}{2}x^4-x^2+m\)(m là tham số ) có đồ thị (Cm), đường tròn (S)có phương trình \(x^2+y^2+2x+6y+1=0\) và điểm A(-1;-6).Tìm m để tồn tại tiếp tuyến với đồ thị (Cm) cắt đường tròn (S) tại hai điểm phân biệt B,C sao cho tam giác ABC có chu vi đạt giá trị lớn nhất
Đường tròn (S) tâm \(I\left(-1;-3\right)\) bán kính \(R=3\)
Thế tọa độ A vào pt (S) thỏa mãn nên A nằm trên đường tròn
Ta cần tìm B, C sao cho chi vi ABC lớn nhất
Đặt \(\left(AB;AC;BC\right)=\left(c;b;a\right)\Rightarrow\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}=2R\)
\(\Rightarrow a+b+c=2R\left(sinA+sinB+sinC\right)\)
Mặt khác ta có BĐT quen thuộc \(sinA+sinB+sinC\le\dfrac{3\sqrt{3}}{2}\)
Dấu "=" xảy ra khi tam giác ABC đều
\(\Rightarrow a=b=c=2R.sin60^0=3\sqrt{3}\)
Khi đó I đồng thời là trọng tâm kiêm trực tâm \(\Rightarrow\left\{{}\begin{matrix}BC\perp AI\\d\left(A;BC\right)=\dfrac{a\sqrt{3}}{2}=\dfrac{9}{2}\end{matrix}\right.\)
\(\Rightarrow\) Phương trình BC có dạng \(y=-\dfrac{3}{2}\)
Hay (Cm) có 1 tiếp tuyến là \(y=-\dfrac{3}{2}\) (hệ số góc bằng 0 nên tiếp tuyến này đi qua 2 cực tiểu)
\(\Rightarrow m=-1\)
Bài 1 Tìm cặp số (x;y) thỏa mãn biểu thức sau
2x^2+y^2-2xy-10x+6y+13=0
x^2+7y^2-4xy-2x-2y+4=0
11x^2+y^2-6xy-14x+2y+9=0
Cho các số x y thỏa mãn x^2 + 5y^2 + 2x - 6y - 4xy + 2 = 0. Tính giá trị biểu thức S = x^2020 + (y-2)^2021
Cho x2-2xy+2y2-2x+6y+13=0. Tính N=3x2y-1/4xy
cho x2 -2xy+2y2-2x+6y+13=0 tính N=(3x2y-1)/4xy
cho x2-2xy+2y2-2x+6y+13=0 . Tính N=3x2y-1/4xy