Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai  Phương
Xem chi tiết
Hồ Thu Giang
7 tháng 8 2015 lúc 16:14

S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)

2S = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

2S - S = \(1-\frac{1}{2^{100}}\)

=> S = \(1-\frac{1}{2^{100}}\)

alna marian
7 tháng 8 2015 lúc 16:12

bài này làm theo công thức bạn nhé

Ngọc Mai Nguyễn
20 tháng 6 2018 lúc 15:19

Phải nhân S với 1/2 chứ bạn

Phạm Hồ Thanh Quang
Xem chi tiết
Ngọc Mai
20 tháng 8 2017 lúc 9:26

Ta có:

\(\sqrt{\frac{1}{1^2}+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{\frac{n^4+2n^3+3n^2+2n+1}{n^2.\left(n+1\right)^2}}\)

\(=\sqrt{\frac{\left(n^2+n+1\right)^2}{n^2\left(n+1\right)^2}}=\frac{n^2+n+1}{n\left(N+1\right)}=1+\frac{1}{n\left(n+1\right)}\)

\(=1+\frac{1}{n}-\frac{1}{n+1}\)

Thế vào bài toán ta được

\(S=1+1+...+1+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=98+\frac{1}{2}-\frac{1}{100}=\frac{9849}{100}\)  

Trần Minh Anh
Xem chi tiết
Đinh Đức Hùng
6 tháng 8 2017 lúc 16:12

Với mọi n thuộc N ta có :

\(\sqrt{\frac{1}{1^2}+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}+\frac{2}{n}-\frac{2}{n\left(n+1\right)}-\frac{2}{\left(n+1\right)}}\)

\(=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}=1+\frac{1}{n}-\frac{1}{n+1}\)

Áp dụng ta được :

\(S=\left(1+\frac{1}{2}-\frac{1}{3}\right)+\left(1+\frac{1}{3}-\frac{1}{4}\right)+....+\left(1+\frac{1}{99}-\frac{1}{100}\right)\)

\(=98+\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)

\(=98+\frac{1}{2}-\frac{1}{100}=\frac{9849}{100}\)

le thi khanh huyen
Xem chi tiết
Incursion_03
1 tháng 10 2018 lúc 23:52

Với a , b , c là số hữu tỉ t/m a = b + c ta luôn có \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\)

Thật vậy : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-2\left(\frac{1}{bc}-\frac{1}{ac}-\frac{1}{ab}\right)}\)

                                                       \(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-\frac{2.abc\left(a-b-c\right)}{a^2b^2c^2}}\)(quy đồng lên )

                                                         \(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\left(\text{do a-b-c=0}\right)\)

                                                          \(=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\)

Áp dụng ta được \(S=\left|\frac{1}{2}-\frac{1}{1}-1\right|+\left|\frac{1}{3}-\frac{1}{2}-1\right|+...+\left|\frac{1}{100}-\frac{1}{99}-1\right|\)

                               \(=1+1-\frac{1}{2}+1+\frac{1}{2}-\frac{1}{3}+...+1+\frac{1}{99}-\frac{1}{100}\)

                                \(=\left(1+1+1+...+1\right)+\left(1+\frac{1}{2}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{100}\right)\)

                                                    (có 99 số 1) 

                                 \(=99+1-\frac{1}{100}\)            

                                 \(=100-\frac{1}{100}=\frac{9999}{100}\)

Vampire Princess
Xem chi tiết
Lê Nguyên
Xem chi tiết
Nobi Nobita
Xem chi tiết
Kiệt ღ ๖ۣۜLý๖ۣۜ
24 tháng 6 2016 lúc 9:31

a)S=2+22+23+...+2100

2S=2(2+22+23+...+2100)

2S=22+23+...+2101

2S-S=(22+23+...+2101)-(2+22+23+...+2100)

S=2101-2

b)\(P=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)

\(3P=3\left(\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}\right)\)

\(3P=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)

\(3P-P=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)\)

\(2P=1-\frac{1}{3^{100}}\)

\(P=\left(1-\frac{1}{3^{100}}\right):2\)

Quốc Lê Minh
Xem chi tiết
Phúc Crazy
Xem chi tiết
tuandung2912
2 tháng 4 2023 lúc 21:34

1+1=3 :)))