Tính: 1/x-1-1/x+1-2/x^2+1-4/x^4+1-8/x^8+1-16/x^16+1
thực hiện phép tính 1/x-1-1/x+1-2/x^2+1-4/x^4+1-8/x^8+1-16/x^16+1
*) tính tổng
A= 1/x-1 - 1/x+1 - 2/x^2+1 - 4/x^4+1 - 8/x^8+1 - 16/x^16+1
-) 1 phần x-1 trừ đi 1 phần x mũ 2 +1 trừ đi 4 phần x mũ 4 +1 trừ đi 8 phần x mũ 8 + 1 trừ đi 16 phần x mũ 16 +1 ( giải thích cho các ban hiểu ấy mà)
tính:
\(\frac{1}{1-x}+\frac{1}{x+1}+\frac{2}{x^2+1}+\frac{4}{x^4+1}+\frac{8}{x^8+1}+\frac{16}{x^{16}+1}\)
Tính:\(\frac{1}{x}+\frac{1}{x+1}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}+\frac{32}{1+x^{32}}\)
Thực hiện phép trừ:
1/1-x+1/1+x+2/1+x^2+4/1+x^4+8/1+x^8+16/1+x^16
\(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\dfrac{32}{1-x^{32}}\)
Bài 1: Thưch hiện phép tính:
\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
= 1+x+1--x/1-x^2 +2/1+x^2+....+16/1+x^26
= 2/1-x^2+2/1+x^2+....+16/1+x^16
= ........
= 16/1-x^16 + 16/1+x^16
= 16+16x^16+16-16x^16/1-x^32
= 32/1-x^32
k mk nha
ĐKXĐ: \(x\ne\pm1\)
\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{8}{1-x^8}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)
\(=\frac{16}{1-x^{16}}+\frac{16}{1+x^{16}}\)
\(=\frac{32}{1-x^{32}}\)
Thực hiện phép tính:
a/ 1/(1-x)+1/(1+x)+1/(1+x^2)+4/(1+x^4)+8/(1+x^8)+16/(1+x^16)
b/chứng minh nếu 1/x+1/y+1/z=2 và x+y+z=xưa thi 1/x^2+1/y^2+1/z^2
Thực hiện phép tính:
1/1-x + 1/1+x + 2/1+x^2 + 4/1+x^4 + 8/1+x^8 + 16/1+x^16
\(\dfrac{1}{1-x}\)+\(\dfrac{1}{1+x}\)+\(\dfrac{2}{1+x^2}\)+\(\dfrac{4}{1+x^4}\)+\(\dfrac{8}{1+x^8}\)+\(\dfrac{16}{1+x^{16}}\)
=
=\(\dfrac{4}{1-x^4}\)+\(\dfrac{4}{1+x^4}\)+\(\dfrac{8}{1+x^8}\)+\(\dfrac{16}{1+x^{16}}\)
=\(\dfrac{8}{1-x^8}\)+\(\dfrac{8}{1+x^8}\)+\(\dfrac{16}{1+x^{16}}\)
=\(\dfrac{16}{1-x^{16}}\)+\(\dfrac{16}{1+x^{16}}\)
=\(\dfrac{32}{1-x^{32}}\)
thực hiên phép tính:
\(\frac{1}{1-x}+\frac{1}{1+x}+\frac{1}{1+x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}+\frac{16}{1+x^{16}}\)