Tìm n thuộc N để (10-2n) chia hết cho (n-2)
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
tìm n thuộc N để:
a,4n+31 chia hết cho 2n+5
b,n^2+n+10 chia hết cho n+1.
làm =2 cách nhớ
b, n.n + n + 10 chia hết n + 1
=> n ( n + 1 ) + 10 chia hết n + 1
Mà n ( n + 1) chia hết n + 1 => 10 chia hết n +1
=> n + 1 thuộc Ư ( 10 ) = { 1, - 1,2 ,-2,5,-5,10,-10}
1. tìm n thuộc Z biết :
a, 7 chia hết cho n+2
b, n-2 là ước của -5
c, -10 là bội 2n-1
2.tìm n thuộc Z biết:
2n-5 chia hết cho n+1 và n+1 chia hết cho 2n-5
3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
cho A= n^3+3n^2+2n
a) cmr A chia hết cho 3 với mọi n
b) tìm n thuộc N, n<10 để A chia hết cho 15
\(A=n\left(n+1\right)\left(n+2\right)\)
\(\text{a) }n;\text{ }n+1;\text{ }n+2\text{ là 3 số tự nhiên liên tiếp nên 1 trong 3 số chia hết cho 3.}\)
\(\Rightarrow A=n\left(n+1\right)\left(n+2\right)\text{ chia hết cho 3}\)
\(\text{b) Để A chia hết cho 15 thì A cần chia hết cho 5 (vì A luôn chia hết cho 3)}\)
\(\Rightarrow\text{1 trong 3 số }n;n+1;n+2\text{ phải chia hết cho 5.}\)
\(\Rightarrow n;n+1;n+2=5\text{ hoặc 10}\)
\(\Rightarrow n\in\left\{3;4;5;8;9\right\}\)
Tìm n thuộc Z để:
a) (2n^2-n+2) chia hết cho (2n+1)
b) (2n^2+n-7) chia hết cho (n-2)
c) (10n^2-7n-5) chia hết cho (2n-3)
d) (2n^2+3n+3) chia hết cho (2n-1)
a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;1;5;-2\right\}\)
d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{1;0;3;-2\right\}\)
Tìm n thuộc N để :
a. n+10 chia hết cho n +4
b. 2n+7 chia hết cho n+4
a)để n+10 chia hết n+4 ta có
(n+10)-(n+4) chia hết n+4
n+10-n-4 chia hết n+4
6 chia hết n+4
n+4 thuộc Ư(6)={1;2;3;6} vì n+4> hoặc=4
n =2
b)để 2n+7 chia hết n+4,ta có
(2n+7)-2(n+4) chia hết n+4
(2n+7)-(2n+8) chia hết n+4
1 chia hết n+4
vì n+4> hoặc =4 =) n ko có giá trị
Tìm n thuộc N để :
a ) n + 15 chia hết cho n + 1
b ) 2n + 10 chia hết cho n + 2
c ) 3n + 14 chia hết cho n - 1
Ai giúp mk với mk tik cho
a) ta có: n + 15 chia hết cho n + 1
=> n+1+14 chia chia hết cho n + 1
...
b) ta có: 2n+10 chia hết cho n + 2
2n+4+6 chia hết cho n + 2
2.(n+2) + 6 chia hết cho n + 2
...
c) ta có: 3n + 14 chia hết cho n - 1
3n - 3 + 17 chia hết cho n - 1
=> 3.(n-1) + 17 chia hết cho n - 1
...
Ta có: n + 15 = (n+1) + 14
Vì \(n+1⋮n+1\)nên để \(\left(n+1\right)+14⋮n+1\) thì \(14⋮\left(n+1\right)\)
\(\Rightarrow\left(n+1\right)\inƯ\left(14\right)\)
\(\Rightarrow\left(n+1\right)\in\left\{1;2;7;14\right\}\)
Tương ứng \(n\in\left(0;1;6;13\right)\)(t/m)
Vậy \(n\in\left(0;1;6;13\right)\)
b) Ta có: 2n + 10 = 2n + 4 + 6 = 2(n+2) + 6
Vì \(2\left(n+2\right)⋮n+2\)nên để \(\text{ 2(n+2) + 6 }⋮n+2\)thì \(\text{ 6 }⋮n+2\)
\(\Rightarrow\left(n+2\right)\inƯ\left(6\right)\)
Làm tiếp như ý a)
c) Ta có: 3n + 14 = 3n - 3 + 17 = 3(n-1) + 17
Vì \(3\left(n-1\right)⋮n-1\)nên để \(3\left(n-1\right)+17⋮n-1\)thì \(17⋮n-1\)
=> n-1 là ước nguyên của 17
\(\Rightarrow\left(n-1\right)\in\left\{1;-1;17;-17\right\}\)
mà \(n\inℕ\)
nên tương ứng \(n\in\left\{2;0;18\right\}\)(t/m)
Vậy \(n\in\left\{2;0;18\right\}\)
Tìm n thuộc Z để
a) 2n-1 chia hết cho n-2
b)n^2-n+2 chia hết cho n-1
c)3n+2 chia hết cho 2n -3
a)2n-1 chia hết cho n-2
2n-4+3 chia hết cho n-2
2(n-2)+3 chia hết cho n-2
3 chia hết cho n-2 hay n-2 EƯ(3)={1;3;-1;-3}
=>nE{3;5;1;-1}
b)n2-n+2 chia hết cho n-1
n(n-1)+2 chia hết cho n-1
=>2 chia hết cho n-1 hay n-1EƯ(2)={1;2;-1;-2}
=>nE{2;3;0;-1}
C)tương tự
Tìm n thuộc Z, để:
a) 10n + 4 chia hết cho 2n + 7
b) 5n - 4 chia hết cho 3n + 1
c) 2n^2 + n - 6 chia hết cho 2n +1
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
3/
$2n^2+n-6\vdots 2n+1$
$\Rightarrow n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1\in Ư(6)$
Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$