Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê hải Đăng
Xem chi tiết
Nguyễn Trọng
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2021 lúc 10:22

e) Ta có: x=-2

nên \(\dfrac{10}{a-3}=-2\)

\(\Leftrightarrow a-3=-5\)

hay a=-2

a) Để x nguyên thì \(10⋮a-3\)

\(\Leftrightarrow a-3\inƯ\left(10\right)\)

\(\Leftrightarrow a-3\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(a\in\left\{4;2;5;1;8;-2;13;-7\right\}\)

hayato
27 tháng 6 2021 lúc 10:24

e) Ta có: x=-2

nên 

Nguyễn Ngọc Lộc
27 tháng 6 2021 lúc 10:24

a, Để x là số nguyên :

\(\Leftrightarrow a-3\inƯ_{\left(10\right)}\)

\(\Leftrightarrow a-3\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

\(\Leftrightarrow a\in\left\{4;2;5;1;8;-2;13;-7\right\}\)

b, - Để x thuộc Q \(\Leftrightarrow a-3\in Z\)

\(\Leftrightarrow a\in Z/\left\{3\right\}\)

c, - Để x là số hữu tỉ dương \(\Leftrightarrow a< 3\) và a là số nguyên

d, - Để x là số hữu tỉ âm <=> a > 3 và a là số nguyên .

e, Thay x = -2 vào ta được : \(\dfrac{10}{a-3}=-2\)

\(\Leftrightarrow a=-2\)

Vậy ...

ngdinhthaihoang123
Xem chi tiết
NTH
15 tháng 9 2017 lúc 12:36

mik ko biết làm nhưng bạn có thể vào câu hỏi tương tự

Huỳnh Quang Sang
11 tháng 7 2019 lúc 17:02

Ta có : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a(b+n)< b(a+n)\)

\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\)vì n > 0

Như vậy : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)

Ta lại có : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a(b+n)>b(a+n)\)

\(\Leftrightarrow ab+an>ab+bn\Leftrightarrow an>bn\Leftrightarrow a>b\)

Như vậy : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)

Bi Pham
1 tháng 9 2020 lúc 21:22

Ta có:a/b=a.(b+n)

                =a.b+a.n/b.(b+n)

a+n/b+n=(a+n).b/(b+n).b

             =a.b+b.n/b.(b+n)

-->a/b<a+n/b+n

       

Khách vãng lai đã xóa
ngdinhthaihoang
Xem chi tiết
Akai Haruma
31 tháng 5 2024 lúc 0:48

Lời giải:

Xét $\frac{a}{b}-\frac{a+n}{b+n}=\frac{a(b+n)-b(a+n)}{b(b+n)}=\frac{n(a-b)}{b(b+n)}$
Nếu $a>b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}>0$

$\Rightarrow {a}{b}>\frac{a+n}{b+n}$

Nếu $a=b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}=0$

$\Rightarrow {a}{b}=\frac{a+n}{b+n}$

Nếu $a<b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}<0$

$\Rightarrow {a}{b}<\frac{a+n}{b+n}$

 

Trần Thị Thảo
Xem chi tiết
Nguyễn Phương Anh
27 tháng 6 2017 lúc 22:48

Xét hai trường hợp b nguyên dương và b nguyên âm. 

_xét b nguyên dương. Vì a,b cùng dấu nên a nguyên dương. Ta có a/b> 0/b=0. Vậy a/b là số hữu tỉ dương.

_xét b nguyên âm

Ta có -b nguyên dương. Vì a,b cùng dấu nên a nguyên âm. Suy ra a nguyên dương. Do đó a/b= -a/-b> 0/-b = 0. Vậy a/b là số hưu tỉ dương

nguyễn Thị phương vy
Xem chi tiết
HUỲNH HƯƠNG LƯU
21 tháng 6 2015 lúc 15:36

theo minh thi

neu a<b thi ta co a(b+n) va b(a+n)

       ab+an và ab + bn

vi a<b nen a(b+n)<b(a+n) suy ra a/b < a+n/b+n

neu a>b thi ta co a(b+n) va b(a+n)

      ab+an va ab+bn

vì a>b nen a(b+n)>b(a+n) suy ra a/b>a+n/b+n

neu a=b thi a(b+n) và b(a+n)

       ab+an và ab+ bn

vì a=b nên a(b+n) = b(a+n) suy ra a/b=a+n/b+n

Nguyen Thi Tuyet Ngan
19 tháng 6 2015 lúc 11:50

a bé hơn b

a+n<b+n
 

 

phạm minh anh
Xem chi tiết
Minh Triều
25 tháng 8 2015 lúc 16:09

\(\frac{a}{b}=\frac{a.\left(b+n\right)}{b.\left(b+n\right)}=\frac{a.b+a.n}{b^2+b.n}\)

\(\frac{a+n}{b+n}=\frac{b.\left(a+n\right)}{b.\left(b+n\right)}=\frac{a.b+b.n}{b^2+b.n}\)

Với a=b thì:
\(\frac{a}{b}=1;\frac{a+n}{b+n}=1\Rightarrow\frac{a}{b}=\frac{a+n}{b+n}\)

 

Với a<b thì:

\(\frac{a.b+a.n}{b^2+b.n}\frac{a+n}{b+n}\)

Mỹ Tâm
Xem chi tiết
ngdinhthaihoang123
Xem chi tiết
phạm thị phương thảo
Xem chi tiết