chứng minh rằng với mọi số nguyên n thì phân số 7n+1/6n+1 là phân số tối giản
Chứng minh rằng với mọi n là số nguyên thì phân số nguyên 7n+8 phần 5n+3 là phân số tối giản
n=0 nhé
Trình bày ra đi
gọi ƯCLN của 7n+8 và 5n+3 là d
ta có 7n+8 chia hết cho d=>35n+40 chia hết cho d
5n+3 chia hết cho d=>35n+21 chia hết cho d
=>(35n+40)-(35n+21) chia hết cho d
hay 17 chia hết cho d
vì 17 là số nguyên tố nên 7n+8/5n+3 là phân số tối giản.
nha ^.^
FrogDJ
chứng minh rằng : phân số \(\frac{7n-1}{6n-1}\)là phân số tối giản với mọi N\(\varepsilon\)Z
. Chứng minh rằng: Với mọi n thì phân số 7n+4/5n+3 là phân số tối giản
Gọi d là ƯCLN(7n+4,5n+3)
\(\Rightarrow\)7n+4 \(⋮\)d và 5n+3 \(⋮\) d
\(\Rightarrow\)5(7n+4)-7(5n+3) \(⋮\) d
\(\Rightarrow\)35n+20-35n-21 \(⋮\) d
\(\Rightarrow\)-1 chia hết cho d hay d = -1
\(\Rightarrow\)\(\dfrac{7n+4}{5n+3}\)là phân số tối giản vì có ƯCLN là -1
Chứng minh rằng : Với mọi n thì phân số \(\dfrac{7n+4}{5n+3}\) là phân số tối giản
\(\text{Để }\) \(\dfrac{7n + 4 }{ 5n + 3 } \) \(\text{ tối giản }\)
\(\Rightarrow ƯC( 7n + 4 ; 5n + 3 ) = 1 \)
\(\text{ Gọi }\) \(ƯC( 7n + 4 ; 5n + 3 ) = d\)
\(\text{ Theo đề bài ta có :}\)
\(\begin{cases} 7n + 4 \vdots d \\5n + 3 \vdots d \end{cases}\)
\(\Rightarrow \begin{cases} 5( 7n + 4 ) \vdots d\\ 7( 5n + 3) \vdots d\end{cases}\)
\(\Rightarrow 7( 5n + 3 ) - 5( 7n + 4 ) \vdots d\)
\(\Rightarrow 35n + 21 - 35n - 20 \vdots d\)
\(\Rightarrow 1 \vdots d\)
\(\Rightarrow d = 1\)
\(\text{ Từ đó suy ra }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)
\(\text{ Vậy }\) \(: \dfrac{7n + 4 }{ 5n + 3 }\) \(\text{ là phân số tối giản } \)
\(#kisibongdem\)
Chứng minh rằng : Với mọi n thì phân số 7n+4/5n+3 là phân số tối giản
Gọi d là ƯCLN(7n+4,5n+3)
=>7n+4 chia hết cho d và 5n+3 chia hết cho d
=>5(7n+4)-7(5n+3) chia hết cho d
=>35n+20-35n-21 chia hết cho d
=>-1 chia hết cho d hay d=-1
Vậy 7n+4/5n+3 là pstg( vì có ƯCLN=-1)
Làm ơn cho mình 1 đ ú n g với,chắc chắn mình đúng......................
Gọi d = ƯCLN ( 7n + 4 ; 5n + 3 )
Ta cso :
7n + 4 chia hết cho d
5n + 3 chia hết cho d
=> 5 ( 7n + 4 ) chia hết cho d
7 ( 5n + 3 ) chia hết cho d
=> 35 n + 20 chia hết cho d
35n + 21 chia hết cho d
=> ( 35n + 21 ) - ( 35n + 20 ) chia hết cho d
=> 1 chia hết cho d
Vậy \(\frac{7n+4}{5n+3}\)là phân số tối giản
Gọi d là ƯCLN (7n+4, 5n+3)
\(\Rightarrow\hept{\begin{cases}7n+4⋮d\\5n+3⋮d\end{cases}\Rightarrow\hept{\begin{cases}5\left(7n+4\right)⋮d\\7\left(5n+3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}35n+20⋮d\\35n+21⋮d\end{cases}}}\)
\(\Rightarrow\left(35n+21\right)-\left(35n+20\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{7n+4}{5n+3}\)là phân số tối giản
chứng minh rằng với mọi số tự nhiên n thì phân số 6n+7/3n+2 là phân số tối giản
Gọi \(d=ƯC\left(6n+7;3n+2\right)\) với \(d\ge1;d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}6n+7⋮d\\3n+2⋮d\end{matrix}\right.\)
\(\Rightarrow6n+7-2\left(3n+2\right)⋮d\)
\(\Rightarrow3⋮d\) \(\Rightarrow\left[{}\begin{matrix}d=1\\d=3\end{matrix}\right.\)
Mà \(\left\{{}\begin{matrix}6n+7=3\left(2n+2\right)+1⋮̸3\\3n+2⋮̸3\end{matrix}\right.\) \(\Rightarrow d\ne3\)
\(\Rightarrow d=1\Rightarrow6n+7\) và \(3n+2\) nguyên tố cùng nhau
Hay \(\dfrac{6n+7}{3n+2}\) tối giản với mọi n tự nhiên
Gọi d là ƯC(6n+7;3n+2) với d≠0;d ≥1(d∈N)
⇒ 6n+7 ⋮ d
3n+2 ⋮ d
⇒6n+7 - 2(3n+2)⋮ d
⇒3⋮d
d∈(1;3)
Vậy 6n+7/3n+2 là phân số tối giản vì là nguyên tố cùng nha
Chứng minh rằng với mọi số tự nhiên n phân số A=4n+1/6n+1 là phân số tối giản
Gọi UCLN(4n+1,6n+1) là d
Ta có: 4n+1 chia hết cho d => 3(4n+1) chia hết cho d => 12n + 3 chia hết cho d
6n+1 chia hết cho d => 2(6n+1) chia hết cho d => 12n + 2 chia hết cho d
=> 12n + 3 - (12n + 2) chia hết cho d
=> 1 chia hết cho d => d = 1
=> UCLN(4n+1,6n+1) = 1
Vậy \(\frac{4n+1}{6n+1}\)là p/s tối giản
Chứng minh rằng với mọi số tự nhiên n phân số A=4n+1/6n+1 là phân số tối giản
Chứng minh rằng với mọi số nguyên n thì phân số n 3 + 2 n n 4 + 3 n 2 + 1 là phân số tối giản