a) 1+1/3 + 1/9 + 1/27 + 1/81
Tính hơp lý : A = 1/3+1/9+1/27+1/81+1/243
\(A=\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\\ =\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+\dfrac{1}{3^5}\\ =>3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}\\ =>3A-A=2A=1-\dfrac{1}{3^5}\\ =>A=\dfrac{1-\dfrac{1}{3^5}}{2}=\dfrac{3^5-1}{2.3^5}\)
A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729 = ?
A=1/3+1/9+1/27+1/81+1/243+1/729
3A=1+1/3+1/9+1/27+1/81+1/243
3A-A=(1+1/3+1/9+1/27+1/81+1/243)-(1/3+1/9+1/27+1/81+1/243+1/729)
3A-A=1-1/3+1/3-1/9+1/9-1/27+1/27-1/81+1/81-1/243+1/243-1/729)
2A=1-1/729
2A=728/729
A=728/729/2
A=364/729
Chúc bạn học tốt :))
tính nhanh
a= 1/3+1/9+1/27+1/81+1/243+1/729
=.........?
\(3A=3\cdot\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\right)\)
\(\Rightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
Lấy \(3A-A=1-\dfrac{1}{729}\)
\(\Rightarrow2A=\dfrac{728}{729}\Rightarrow A=\dfrac{364}{729}\)
A=1/3+1/9+1/27+1/81+1/243+1/729
3A=1+1/3+1/9+1/27+1/81+1/243
3A-A=(1+1/3+1/9+1/27+1/81+1/243)-(1/3+1/9+1/27+1/81+1/243+1/729)
3A-A=1-1/3+1/3-1/9+1/9-1/27+1/27-1/81+1/81-1/243+1/243-1/729)
2A=1-1/729
2A=728/729
A=728/729/2
A=364/729
Tính A=1/3+1/9+1/27+1/81
Ta có: 1/3 = 27/81
1/9 = 9/81
1/27 = 3/81
Thay các giá trị vừa quy đồng vào A ta có:
A = 27/81 + 9/81 + 3/81 + 1/81
A = 27 + 9 + 3 + 1
81
A = 40
81
A = 1 + 1\3 + 1\9 + 1\27 + 1\81 + 1\243 + 1\729
\(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(A=\frac{4}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(A=\frac{12}{9}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
Từ chỗ này làm dễ hơn rồi bạn tự làm tiếp đi nhé
A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
Mọi người giúp mình nha!
A=1+1/3+1/9+1/27+1/81+......+1/729 tính nhanh tổng
Câu trả lời hay nhất: Đặt A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
A x 3 = 3 x ﴾1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729﴿
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
A x 3 ‐ A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 ‐ ﴾1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729﴿
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 ‐ 1/3 ‐ 1/9 ‐ 1/27 ‐ 1/81 ‐ 1/243 ‐ 1/729
= 1 ‐ 1/729
A x 2 = 728/729
A = 364/729
NHỚ TK MK NHA
(y+1/3)+(y+1/9)+(y+1/27)+(y+1/81)=56/81
(y + \(\dfrac{1}{3}\)) + ( y + \(\dfrac{1}{9}\)) + ( y + \(\dfrac{1}{27}\)) + ( y + \(\dfrac{1}{81}\)) = \(\dfrac{56}{81}\)
( y + y + y + y ) + (\(\dfrac{1}{3}\)+ \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\)) = \(\dfrac{56}{81}\)
4\(y\) + ( \(\dfrac{27}{81}\) + \(\dfrac{9}{81}\) + \(\dfrac{3}{27}\) + \(\dfrac{1}{81}\) ) = \(\dfrac{56}{81}\)
4y + \(\dfrac{40}{81}\) = \(\dfrac{56}{81}\)
4y = \(\dfrac{56}{81}\) - \(\dfrac{40}{81}\)
4y = \(\dfrac{16}{81}\)
y = \(\dfrac{16}{81}\) : 4
y = \(\dfrac{4}{81}\)
\(\left(y+\dfrac{1}{3}\right)+\left(y+\dfrac{1}{9}\right)+\left(y+\dfrac{1}{27}\right)+\left(y+\dfrac{1}{81}\right)=\dfrac{56}{81}\)
\(\Rightarrow y+\dfrac{1}{3}+y+\dfrac{1}{9}+y+\dfrac{1}{27}+y+\dfrac{1}{81}=\dfrac{56}{81}\)
\(\Rightarrow4\times y+\dfrac{40}{81}=\dfrac{56}{81}\)
\(\Rightarrow4\times y=\dfrac{56}{81}-\dfrac{40}{81}\)
\(\Rightarrow4\times y=\dfrac{16}{81}\)
\(\Rightarrow y=\dfrac{16}{81}:4\)
\(\Rightarrow y=\dfrac{4}{81}\)
\((y+\dfrac{1}{3})+(y+\dfrac{1}{9})+(y+\dfrac{1}{27})+(y+\dfrac{1}{81})=\dfrac{56}{81}\)
\(=>4y+(\dfrac{1}{3}+\dfrac{1}{9]+\dfrac{1}{27}+\dfrac{1}{81})=\dfrac{56}{81}\)
\(=>4y+\dfrac{1}{3}(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27})=\dfrac{56}{81}\)
\(=>4y+\dfrac{1}{2}(1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}-\dfrac{1}{3}-\dfrac{1}{9}-\dfrac{1}{27}-\dfrac{1}{81})=\dfrac{56}{81}\)
\(=>4y+\dfrac{1}{2}(1-\dfrac{1}{81})=\dfrac{56}{81}\)
\(=>4y+\dfrac{1}{2}\times\dfrac{80}{81}=\dfrac{56}{81}\)
\(=>4y+\dfrac{40}{81}=\dfrac{56}{81}\)
\(=>4y=\dfrac{56}{81}-\dfrac{40}{81}\)
\(=>4y=\dfrac{16}{81}\)
\(=>y=\dfrac{4}{81}\)
tính nhanh : A = 1/3 + 1/9 + 1/27 + 1/81+.....+1/59049
A = 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049
3 x A = 3 x ( 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )
3 x A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683
3 x A - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683
- ( 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )
= 1 - 1/59049
2 x A = 59048/59049
A = 59048/59049 : 2
A = 29524/59049
A = 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049
3 x A = 3 x ( 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )
3 x A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683
3 x A - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/19683 - ( 1 + 1/3 + 1/9 + 1/27 + 1/81 + ... + 1/59049 )
= 1 - 1/59049
2 x A = 59048/59049
A = 59048/59049 : 2
A = 29524/59049
(a+1/1.3)+(a+1/3.5)+(a+1/5.7)+...+(a+1/23.25)=11.a+(1/3+1/9+1/27+1/81+1/243)
(a+\(\dfrac{1}{1.3}\))+(a+\(\dfrac{1}{3.5}\))+(a+\(\dfrac{1}{5.7}\))+..+(a+\(\dfrac{1}{23.25}\))=11.a+(\(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\))
(a+a+..+a)+(\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)) = 11.a+ \(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\))
Đặt A =(a+a+..+a) + \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)
Xét dãy số 1; 3; 5;...;25 Dãy số trên là dãy số cách đều với khoảng cách là: 3-1 = 2
Dãy số trên có số số hạng là: (25 - 1): 2 + 1 = 13
Vậy A = a\(\times\)13 + \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{23.25}\)
A = a\(\times\)13 + \(\dfrac{1}{2}\) \(\times\)(\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}\)+\(\dfrac{2}{5.7}\)+...+\(\dfrac{2}{23.25}\))
A = a \(\times\) 13 + \(\dfrac{1}{2}\times\)( \(\dfrac{1}{1}-\dfrac{1}{3}\)+\(\dfrac{1}{3}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)- \(\dfrac{1}{7}\)+...+\(\dfrac{1}{23}\) - \(\dfrac{1}{25}\))
A = a\(\times\)13 + \(\dfrac{1}{2}\) \(\times\) \(\dfrac{24}{25}\)
A = a\(\times\)13 + \(\dfrac{12}{25}\) (1)
Đặt B = \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\)+ \(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)+\(\dfrac{1}{243}\)
B\(\times\)3 =1 + \(\dfrac{1}{3}\)+\(\dfrac{1}{9}\)+\(\dfrac{1}{27}\)+\(\dfrac{1}{81}\)
B\(\times\)3 - B = 1 - \(\dfrac{1}{243}\) = \(\dfrac{242}{243}\)
2B = \(\dfrac{242}{243}\)
B = \(\dfrac{242}{243}\): 2
B = \(\dfrac{121}{243}\)
11a + B = 11a + \(\dfrac{121}{243}\) (2)
Từ (1) và(2) ta có:
a\(\times\)13 + \(\dfrac{12}{25}\) = 11\(\times\) a + \(\dfrac{121}{143}\)
a \(\times\) 13 + \(\dfrac{12}{25}\) - 11 \(\times\)a = \(\dfrac{121}{143}\)
\(a\times\)(13 - 11) + \(\dfrac{12}{25}\) = \(\dfrac{121}{143}\)
a \(\times\) 2 + \(\dfrac{12}{25}\) = \(\dfrac{121}{243}\)
a \(\times\) 2 = \(\dfrac{121}{243}\) - \(\dfrac{12}{25}\)
a \(\times\) 2 = \(\dfrac{109}{6075}\)
a = \(\dfrac{109}{6075}\): 2
a = \(\dfrac{109}{12150}\)