CM A=\(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{16}\)không thuộc N (làm theo bất đẳng thức)
Cm bất đẳng thức \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1;n\in N,n\ge2\)
Ta có :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\) ( đpcm )
Vậy ...
Bạn tham khảo nhé mình mới lớp 7
bạn vào đây nè https://olm.vn/hoi-dap/question/62675.html
CM các bất đẳng thức:
a) \(\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+.............+\frac{1}{100^2}< 0,3\)
b) \(\frac{1}{1^2+2^2}+\frac{1}{2^2+3^2}+...............+\frac{1}{n^2+\left(n+1\right)^2}< 0,45\)với số nguyên dương n
Chứng mình bất đẳng thức
1/\(\frac{1}{4}\left(\frac{x}{y}+\frac{y}{z}\right)\ge\frac{x}{y+z}\)
2/\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
Mình mới làm quen với bất đẳng thức, các bạn giải chi tiết hộ mình nha. À mà giải theo Cauchy ý nha !
2)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
theo yêu cầu của bạn thì đến đâ mk làm theo cách này
ÁP Dụng cô si ta có:\(x+y\ge2\sqrt{xy}\)\(\Rightarrow\left(x+y\right)^2\ge4xy\)(luôn đúng)\(\Rightarrowđpcm\)
cách 2
\(\left(x+y\right)^2\ge4xy\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\)(luôn đúng)
\(\Rightarrowđpcm\)
CM bất đẳng thức : \(\frac{x^2}{1+16x^4}+\frac{y^2}{1+16y^4}\le\frac{1}{4},\) vợi một x,y thuộc R
Võ Đông Anh Tuấn giúp mk bài này nha .
Ta có : \(\frac{x^2}{1+16x^4}=\frac{x^2}{1+\left(4y^2\right)^2}\le\frac{y^2}{2.4y^2}=\frac{1}{8}\)
\(\frac{y^2}{1+16y^4}=\frac{y^2}{1+\left(4y^2\right)^2}\le\frac{y^2}{2.4y^2}=\frac{1}{8}\)
\(\Leftrightarrow\frac{x^2}{1+16x^4}+\frac{y^2}{1+16y^4}\le\frac{1}{4}\)
=> ĐPCM
Chứng minh bất đẳng thức
Với n thuộc N, chứng minh \(\sqrt{n+1}-\sqrt{n}>\frac{1}{2\sqrt{n+1}}\)
Sử dụng kết quả trên, chứng minh: \(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2012}}< 2.\sqrt{2012}\)
Chứng minh \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< \frac{1}{\sqrt{2n+1}}\)với n thuộc N*
Chứng minh bất đẳng thức sau
\(\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{n!}< 2\)
Ta có: \(4!>4.3\) ; \(5!>5.4\) ;....; \(n!>n\left(n-1\right)\)
\(\Rightarrow VT=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}< 1+\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n-1\right)}\)
\(VT< 1+\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(VT< 2-\frac{1}{n}< 2\) (đpcm)
Cm bất đẳng thức \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
với a ;b;c là độ dài 3 cạnh của một tam giac
\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)
Tương tự cộng lại...
cho a,b,c là các số thực dương. CM bất đẳng thức: \(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}\)
\(VT\le\frac{1}{2\sqrt{a^2bc}}+\frac{1}{2\sqrt{b^2ac}}+\frac{1}{2\sqrt{c^2ab}}=\frac{1}{2}\left(\frac{1}{\sqrt{ab.ac}}+\frac{1}{\sqrt{ab.bc}}+\frac{1}{\sqrt{ac.bc}}\right)\)
\(VT\le\frac{1}{4}\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+\frac{1}{bc}\right)=\frac{1}{2}\left(\frac{a+b+c}{abc}\right)\)
Dấu "=" xảy ra khi \(a=b=c\)
Tất cả đều là BĐT Cô-si đó bạn:
\(a^2+bc\ge2\sqrt{a^2bc}\Rightarrow\frac{1}{a^2+bc}\le\frac{1}{2\sqrt{a^2bc}}\)
\(\frac{1}{\sqrt{ab.ac}}=\sqrt{\frac{1}{ab}}.\sqrt{\frac{1}{ac}}\le\frac{1}{2}\left(\frac{1}{ab}+\frac{1}{ac}\right)\) (chính là BĐT Cô-si dạng \(\sqrt{xy}\le\frac{1}{2}\left(x+y\right)\) thôi)
Chứng minh: \(\frac{3}{2}\ge sin\frac{A}{2}+sin\frac{B}{2}+sin\frac{C}{2}>1\)
P/s: Không dùng bất đẳng thức lượng giác hoặc đẳng thức lượng giác của lớp 10 (nếu dùng thì phải chứng minh lại bằng kiến thức lớp 9)