Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hồng Như
Xem chi tiết
Nguyễn Chính Hải
17 tháng 1 2017 lúc 22:31

a) Ta có: A = x^2+4x

           =>A= x(×+4)

Để A có gtri dương=>x và ( x+4) cùng dấu

Xét x và x+4 có gtri dương

=>x lớn hơn  0     (1)

Xét x và x+4 có gtri âm

=>x bé hơn -4.       (2)

Từ (1) và (2) ta suy ra

Để A có gtri dương thì x phải lớn hơn 0 và bé hơn -4

b)

Ta có: B = (x-3)(x+7)

=> B = (x+(-3)) (x+7)

=> B = x^2+(-3)x+7x+(-21)

=> B =x(x+5)+(-21)

Để B có gtri dương => x(x+5)>21

Xét x = 1 => B=1(1+5)=6< 21( ko t/mãn)

Tương tự vs 2 ta cũng thấy ko thỏa mãn

Xét x =3=>B=3(3+5)=24>21( t/mãn)

Vậy để B có gtri dương thì x> 3

Còn câu c) thì tịttttttttttt..........(°¤°)

Nguyễn Dương Thái
21 tháng 6 2017 lúc 16:07

C=(1/2-x).(1/3-x)     (1)

x\(-\infty\)                  1/3                1/2                     \(+\infty\)
1/2-x                    -                       -      0              +
1/3-x                    -          0           +                    +
(1/2-x).(1/3-x)                    +         0           -       0              +

(1) <=> x<1/3 hoac x>1/2

Vay voi x<1/3 va x>1/2 thi bieu thuc da cho co gia tri duong

Kim Hyun Jun
28 tháng 9 2017 lúc 20:10

TÔI NGHĨ BẠN NÊN LÀM CÁCH CỦA BẠN NGUYỄN CHÍ HẢI

Nguyễn Thị Liên
Xem chi tiết
dinh ha thuy chi
Xem chi tiết
Nguyễn Lâm Nguyên
Xem chi tiết
Lấp La Lấp Lánh
21 tháng 9 2021 lúc 12:42

Bài 2:

a) \(A=x^2+6\ge6>0\forall x\in R\)

b) \(B=\left(5-x\right)\left(x+8\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}5-x>0\\x+8>0\end{matrix}\right.\\\left\{{}\begin{matrix}5-x< 0\\x+8< 0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}5>x\ge-8\left(nhận\right)\\-8>x>5\left(VLý\right)\end{matrix}\right.\)

 

gasuyfg
Xem chi tiết
Trà My
21 tháng 6 2016 lúc 10:41

bài 1:

\(\left(\frac{1}{2}-2\right).\left(\frac{1}{3}-x\right)>0\)

\(\Leftrightarrow\left(-\frac{3}{2}\right)\left(\frac{1}{3}-x\right)>0\)

Để biểu thức \(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương thì \(-\frac{3}{2}\)và \(\frac{1}{3}-x\)phải cùng âm

\(\Leftrightarrow\frac{1}{3}-x< 0\)

\(\Leftrightarrow x>\frac{1}{3}\)

Vậy \(x>\frac{1}{3}\)thì biểu thức\(\left(\frac{1}{2}-2\right)\left(\frac{1}{3}-x\right)\) nhận giá trị dương

bài 2:

a)Để \(\frac{x^2-2}{5x}\) nhận giá trị âm thì x2-2<0 hoặc 5x<0

+)Nếu x2-2<0

=>x2<2

=>x<\(\sqrt{2}\)

+)Nếu 5x<0

=>x<0

Vậy x<\(\sqrt{2}\)hoặc x<0 thì biểu thức \(\frac{x^2-2}{5x}\)nhận giá trị âm

b)Để E nhận giá trị âm thì \(\frac{x-2}{x-6}\)nhận giá trị âm

=>x-2<0 hoặc x-6<0

+)Nếu x-2<0

=>x<2

+)Nếu x-6<0

=>x<6

Vậy x<2 hoặc x<6 thì biểu thức E nhận giá trị âm

Tung Tran
Xem chi tiết
Nobita Kun
19 tháng 2 2016 lúc 20:59

a, Để x2 + 5x đạt giá trị âm thì 1 trong 2 số là âm và GTTĐ của số âm hơn GTTĐ của số tư nhiên

và x2 luôn tự nhiên => 5x âm

=>  GTTĐ của x2 < GTTĐ của 5x

=> x < 5

=> x thuộc {4; 3; 2; 1;....}

Vậy....

tran duy anh
15 tháng 7 2016 lúc 15:49

câu hỏi này tôi xem xét lại sau

lê thị hà
3 tháng 7 2017 lúc 12:57

còn bài 2

Dương Thuỳ Dương
Xem chi tiết
Không Tên
16 tháng 7 2018 lúc 20:00

Bài 1:

a)   \(x^2+5x=x\left(x+5\right)< 0\)  (1)

Nhận thấy:   \(x< x+5\)

nên từ (1)   \(\Rightarrow\)  \(\hept{\begin{cases}x< 0\\x+5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< 0\\x>-5\end{cases}}\)\(\Leftrightarrow\)\(-5< x< 0\)

Vậy.....

b)   \(3\left(2x+3\right)\left(3x-5\right)< 0\)

TH1:   \(\hept{\begin{cases}2x+3>0\\3x-5< 0\end{cases}}\)\(\Leftrightarrow\)  \(\hept{\begin{cases}x>-\frac{3}{2}\\x< \frac{5}{3}\end{cases}}\)\(\Leftrightarrow\)\(-\frac{3}{2}< x< \frac{5}{3}\)

TH2:  \(\hept{\begin{cases}2x+3< 0\\3x-5>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{3}{2}\\x>\frac{5}{3}\end{cases}}\)  vô lí

Vậy   \(-\frac{3}{2}< x< \frac{5}{3}\)

Không Tên
16 tháng 7 2018 lúc 20:06

Bài 2:

a)  \(2y^2-4y=2y\left(y-2\right)>0\)

TH1:   \(\hept{\begin{cases}y>0\\y-2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>0\\y>2\end{cases}}\)\(\Leftrightarrow\)\(y>2\)

TH2:  \(\hept{\begin{cases}y< 0\\y-2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< 0\\y< 2\end{cases}}\)\(\Leftrightarrow\)\(y< 0\)

Vậy  \(\orbr{\begin{cases}y< 0\\y>2\end{cases}}\)

b)  \(5\left(3y+1\right)\left(4y-3\right)>0\)

TH1:  \(\hept{\begin{cases}3y+1>0\\4y-3>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y>-\frac{1}{3}\\y>\frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y>\frac{3}{4}\)

TH2:  \(\hept{\begin{cases}3y+1< 0\\4y-3< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}y< -\frac{1}{3}\\y< \frac{3}{4}\end{cases}}\)\(\Leftrightarrow\)\(y< -\frac{1}{3}\)

Vậy   \(\orbr{\begin{cases}y>\frac{3}{4}\\y< -\frac{1}{3}\end{cases}}\)

Alexandra Alice
Xem chi tiết
Từ Quỳnh Hương
Xem chi tiết
Huy Hoàng
18 tháng 6 2018 lúc 11:05

a/ Ta có \(A=x^2+4x=x\left(x+4\right)\)

Để A > 0

=> \(x\left(x+4\right)>0\)

=> \(\hept{\begin{cases}x>0\\x+4>0\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\x+4< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>0\\x>-4\end{cases}}\)hoặc \(\hept{\begin{cases}x< 0\\x< -4\end{cases}}\)

=> \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)

Vậy khi \(\orbr{\begin{cases}x>0\\x< -4\end{cases}}\)thì A > 0.

b/ Ta có \(B=\left(x-3\right)\left(x+7\right)\)

\(B=x^2+7x-3x-21\)

\(B=x^2+4x-21\)

\(B=x^2+4x+4-25\)

\(B=\left(x+2\right)^2-25\)

Để B > 0

=> \(\left(x+2\right)^2-25>0\)

<=> \(\left(x+2\right)^2>25\)

<=> \(\orbr{\begin{cases}x+2>5\\x+2>-5\end{cases}}\)

<=> \(\orbr{\begin{cases}x>3\\x>-7\end{cases}}\)

Vậy khi \(\orbr{\begin{cases}x>3\\x>-7\end{cases}}\)thì B > 0.

c/ Ta có \(C=\left(\frac{1}{2}-x\right)\left(\frac{1}{3}-x\right)=\frac{1}{6}-\frac{1}{2}x-\frac{1}{3}x+x^2=\frac{1}{6}-\frac{5}{6}x^2+x^2=\frac{1}{6}-\frac{1}{6}x^2=\frac{1}{6}\left(1-x^2\right)\)

Để C > 0

<=> \(\frac{1}{6}\left(1-x^2\right)>0\)

<=> \(1-x^2>0\)

<=> \(x^2>1\)

<=> \(x>\pm1\)

Vậy khi \(\orbr{\begin{cases}x>1\\x>-1\end{cases}}\)thì C > 0.