Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần thùy dương
Xem chi tiết
nhok họ nguyễn
3 tháng 9 2017 lúc 23:58

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

Nguyễn Vân Anh
Xem chi tiết
Cao Đức Phát
25 tháng 7 2021 lúc 9:30

 ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết

Khách vãng lai đã xóa
KHOA
13 tháng 10 2023 lúc 21:46

ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết ko biết

KHOA
13 tháng 10 2023 lúc 21:47

Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50

Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101

Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513) 

= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =

101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)

Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2) 

Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho BTa có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50

Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101

Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513) 

= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =

101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)

Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2) 

Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho BTa có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50

Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101

Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513) 

= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =

101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)

Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2) 

Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho BTa có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50

Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101

Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513) 

= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =

101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)

Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2) 

Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B

đỗ hải nam
Xem chi tiết
Nguyễn Tuấn Minh
13 tháng 2 2016 lúc 17:14

Bạn cộng biểu thức trong ngoặc của vế trái với vế phải là ra 100

Le Thi Khanh Huyen
13 tháng 2 2016 lúc 17:16

Ta có:

\(100-\left(1+\frac{1}{2}+\frac{1}{3}=...+\frac{1}{100}\right)\)

\(=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

Nguyễn Ngọc Nhi
5 tháng 3 2017 lúc 18:48

Cảm ơn TRẦN THÙY DUNG nhiều

Ngọc Hoàng
Xem chi tiết
Nguyễn Trung Hiếu
8 tháng 8 2015 lúc 19:06

Tử số=1/2+2/3+3/4+...........+99/100 
=1-1/2+1-1/3+1-1/4+...........+1-1/100
=1.100-(1/2+1/3+1/4+............+1/100)
=100-(1/2+1/3+1/4+............+1/100)
=Mẫu số
=>Phép tính trên có giá trị bằng 1.

Vũ Ánh Nhi
Xem chi tiết
Vũ Thái Hà
4 tháng 5 2018 lúc 14:41

Chuyển vế đổi dấu:

\(100-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

=>\(100=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}+1+\frac{1}{2}+...+\frac{1}{100}\)

=>100=1+1+1+...+1

=>100=100

Vậy \(100-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

danghuyhieu
Xem chi tiết
Bùi Cẩm Uyên
8 tháng 3 2017 lúc 22:36

Như thế nào zậy!!

Nguyễn Vũ  Ngọc Linh
Xem chi tiết
nhok sư tử
3 tháng 5 2017 lúc 20:12

thiếu đề rồi pn ơi

ST
3 tháng 5 2017 lúc 20:34

Đặt A là vế trái , B là vế phải

Ta có: \(B=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)

\(=\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+\left(1-\frac{1}{4}\right)+...+\left(1-\frac{1}{100}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(=100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=A\)

Vậy A = B

Nguyễn Gia An
Xem chi tiết
Akai Haruma
28 tháng 5 2023 lúc 0:23

Lời giải:

$\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}$

$< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}$

$=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{100-99}{99.100}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}$

$=1-\frac{1}{100}< 1$ 

Ta có điều phải chứng minh

hoàng thu phương
Xem chi tiết
Cù Huy Sơn
Xem chi tiết
Đinh Tuấn Việt
9 tháng 5 2015 lúc 20:32

Ta thấy:

\(\frac{1}{2^2}=\frac{1}{2.2}