Chứng minh rằng :100- ( 1+1/2+1/3+...+1/100)=1/2+2/3+3/4+...+99/100
chứng minh rằng 1-1/2^2-1/3^2-1/4^2-.......-1/100^2<1/100
1.chứng minh rằng : \(\frac{1}{2}!+\frac{2}{3}!+\frac{3}{4}!+...+\frac{99}{100}!< 1\)
2. Chứng minh rằng :\(\frac{1.2-1}{2}+\frac{2.3-1}{3}+\frac{3.4-1}{4}+...+\frac{99.100-1}{100}< 2\)
chứng minh rằng S=1/1^2+1/2^2+1/3^2+1/4^2+...+1/100^2<12/3
chứng minh rằng : 1 - 1/22 - 1/32 - 1/42 - ...........- 1/1002 > 1/100
Chứng minh rằng
1- 1/2+ 1/3- 1/4+...+ 1/99- 1/100= 1/51+ 1/52+...+ 1/100= -1/2
Cho A=1/2^2+1/2^4+1/2^6+1/2^8+...+1/2^100
Chứng minh rằng A<1/3
chứng minh rằng \(\frac{1}{1}-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-............-\frac{1}{100^2}< \frac{1}{100}\)
Chứng minh rằng 1.2-1/2! + 2.3-1/3! + 3.4-1?4! +...+ 99.100-1/100! <2