{1/2+x}+ {1/4 +x} + {1/8 +x} + {1/16+ x} =1
tìm x
bài 1tìm x
x/8=-2/5*3/16
x+4/5=-1/7*14/15
\(\frac{x}{8}=\frac{-2}{5}\cdot\frac{3}{16}\)
\(\frac{x}{8}=\frac{-3}{40}\)
\(\Rightarrow x=\frac{8.\left(-3\right)}{40}=\frac{-3}{5}\)
\(\frac{x+4}{5}=\frac{-1}{7}\cdot\frac{14}{15}\)
\(\frac{x+4}{5}=\frac{-2}{15}\)
\(\Rightarrow x+4=\frac{5.\left(-2\right)}{15}=\frac{-2}{3}\)
\(\Rightarrow x=\frac{-14}{3}\)
Tính: 1/x-1-1/x+1-2/x^2+1-4/x^4+1-8/x^8+1-16/x^16+1
Thực hiện phép trừ:
1/1-x+1/1+x+2/1+x^2+4/1+x^4+8/1+x^8+16/1+x^16
\(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2}{1-x^2}+\dfrac{2}{1+x^2}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+...+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\dfrac{32}{1-x^{32}}\)
thực hiện phép tính 1/x-1-1/x+1-2/x^2+1-4/x^4+1-8/x^8+1-16/x^16+1
*) tính tổng
A= 1/x-1 - 1/x+1 - 2/x^2+1 - 4/x^4+1 - 8/x^8+1 - 16/x^16+1
-) 1 phần x-1 trừ đi 1 phần x mũ 2 +1 trừ đi 4 phần x mũ 4 +1 trừ đi 8 phần x mũ 8 + 1 trừ đi 16 phần x mũ 16 +1 ( giải thích cho các ban hiểu ấy mà)
1/1-x +1/1+x +2/1+x^2 +4/1+x^4 +8/1+x^8 +16/1+x^16 = 32/1-x^32 c/m
\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)
\(=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\dfrac{32}{1-x^{32}}\)
(x^2+x+1)(x^4+x^2+1)(x^8+x^4+1)(x^16+x^8+1)(x^32+x^16+1) rút gọn zùm mình với
https://www.youtube.com/watch?v=cFZDEMTQQCs
1Tìm x thuộc Z
a,|x+1|=5;|x+1|=0
b,|x|=x
2,Cho|x|=5;|y|=8;tính x+y
1.
a) |x + 1| = 5
=> x +1 ∈ {5;-5}
TH1 : x + 1 = 5
x = 5 - 1
x = 4
TH2 : x + 1 = -5 (Tương tự như trên)
Vậy x ∈ {4;-6}
|x + 1| = 0
=> x + 1 = 0 (Vì 0 không phải là số âm hay dương nên chỉ có 1 TH duy nhất)
x = ... (Tự tính)
Vậy x = ...
b) |x| = x
=> x ∈ {x;-x}
Vậy x ∈ {x;-x}
2.
Ta có : |x| = 5 => x ∈ {5;-5}
|y| = 8 => y ∈ {8;-8}
Thay những số trên vào x + y rồi tính.
- Có quá khó hiểu ?
1.a) \(\left|x+1\right|=5\)
\(\Rightarrow\orbr{\begin{cases}x+1=5\\x+1=-5\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\x=-6\end{cases}}\)
\(\left|x+1\right|=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
b) \(\left|x\right|=x\)
\(\Rightarrow x\in\left\{x;-x\right\}\)
2.
\(\left|x\right|=5\)
\(\Rightarrow x\in\left\{5;-5\right\}\)
\(\left|x\right|=8\)
\(\Rightarrow x\in\left\{8;-8\right\}\)
Tính
Hai số dương cộng : \(5+8=13\)
Hai số âm cộng : \(-5+-8=-14\)
Số dương cộng số âm : \(5+-5=0\)
\(8+-8=0\)
Hc tốt
viết gọn biểu thức :
(x^2-x+1)(x^4-x^2+1)(x^8-x^4+1)(x^16-x^8+1)(x^32-x^16+1)
Đề Phân tích đa thức thành nhân tử 1/(1 - x )+ 1/(1+x)+2/(1+x^2)+ 4/(1+x^4)+8/(1+x^8) - 16/(1+ x^16)