Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Vũ Hoàng Huy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 10 2018 lúc 14:29

Giải bài 9 trang 71 Toán 8 Tập 1 | Giải bài tập Toán 8

* Để chứng minh ABCD là hình thang ta cần chứng minh AD // BC.

Thông thường để chứng minh hai đường thẳng song song ta có thể chọn một trong các cách:

+ Chứng minh hai góc so le trong bằng nhau hoặc hai góc đồng vị bằng nhau.

+ Chứng minh hai đường thẳng cùng song song hoặc cùng vuông góc với đường thẳng thứ ba.

Ở bài này ta sẽ đi chứng minh hai góc so le trong bằng nhau là góc A2 và C1.

Theo giả thiết ta có:

Giải bài 9 trang 71 Toán 8 Tập 1 | Giải bài tập Toán 8

Mà hai góc này ở vị trí so le trong

⇒ AD // BC

Vậy ABCD là hình thang (đpcm).

Lê Đăng Hải Phong
Xem chi tiết
Thanh Nguyễn Thị
Xem chi tiết
Bách Khả
3 tháng 7 2021 lúc 17:04

Xét ▲ADC và ▲BCD có:

AD = BC ( gt )

AC = BD ( gt )

DC chung

=> ▲ADC = ▲BCD ( c.c.c )

=> góc D = góc C ( c.t.ứ )

cmtt ta đc góc A = Góc B

Mà Góc D + góc A + Góc C + Góc B=360o

=> 2GócA+2GócD=360o

-> gócA+gócD=180o ( 2 góc trong cùng phía )=>AB//DC -> ABCD là hình thang

Vì góc D = góc C (cmt) nên ABCD là hình thang cân

Khách vãng lai đã xóa
Sách Giáo Khoa
Xem chi tiết
Tuyết Nhi Melody
21 tháng 4 2017 lúc 11:46

Bài giải:

Ta có AB = BC (gt)

Suy ra ∆ABC cân

Nên A1^=C1^ (1)

Lại có A1^=A2^ (2) (vì AC là tia phân giác của A^)

Từ (1) và (2) suy ra C1^=A2^

nên BC // AD (do C1^,A2^ ở vị trí so le trong)

Vậy ABCD là hình thang

qwerty
21 tháng 4 2017 lúc 11:50

Ta có AB = BC (gt)

Suy ra: ∆ABC cân.

Nên \(\widehat{A_1}=\widehat{C_1}\) (1)

Lại có \(\widehat{A_1}=\widehat{A_2}\) (2) (vì AC là tia phân giác của ˆAA^)

Từ (1) và (2) suy ra \(\widehat{C_1}=\widehat{A_2}\)

nên BC // AD (do \(\widehat{A_1};\widehat{C_2}\) ở vị trí so le trong)

Vậy ABCD là hình thang.

Nguyễn Anh Khoa
Xem chi tiết
Lê Anh Tú
18 tháng 8 2017 lúc 20:44

Xét tam giác ABC có AB = BC => ABC là tam giác cân

=> góc BAC = góc BCA Mà góc BAC = góc DAC (do AC là tia phân giác của góc A)

Nên góc CAD = góc BCA => BC // AD (so le trong) => ABCD là hình thang 

Vậy...

Nguyễn Thị Phương Linh
18 tháng 8 2017 lúc 20:53

hình thang nha

Huy Hoang
19 tháng 6 2020 lúc 10:14

A B C D 1 2 1

* Để chứng minh ABCD là hình thang ta cần chứng minh AD // BC.

Thông thường để chứng minh hai đường thẳng song song ta có thể chọn một trong các cách:

+ Chứng minh hai góc so le trong bằng nhau hoặc hai góc đồng vị bằng nhau.

+ Chứng minh hai đường thẳng cùng song song hoặc cùng vuông góc với đường thẳng thứ ba.

Ở bài này ta sẽ đi chứng minh hai góc so le trong bằng nhau là góc A2 và C1.

Theo giả thiết ta có:

\(+)AB=BC\Rightarrow\Delta ABC\) cân tại B

\(\Rightarrow\widehat{A_1}=\widehat{C_1}\left(1\right)\)

\(+)AC\)là tia phân giác góc A
\(\Rightarrow\widehat{A_2}=\widehat{A_1}\left(2\right)\)

Từ (1)(2) => \(\widehat{A_2}=\widehat{C_1}\left(=\widehat{A_1}\right)\)

Mà hai góc này ở vị trí so le trong

=> AD // BC

Vậy ABCD là hình thang (đpcm).

Khách vãng lai đã xóa
Trường Nguyễn Công
Xem chi tiết
phùng thị thu hải
Xem chi tiết
SKT_ Lạnh _ Lùng
25 tháng 7 2016 lúc 7:45

Tam giác ABC có : AB=BC(gt)

Suy ra:tam giác ABC cân tại B

Suy ra:góc ABC=goc ACB(2 goc o day bang nhau cua tam giac can ABC)

Goc DAC= goc BAC(vi AC la tia phan giac cua goc A)

Suy ra:goc DAC= goc ACB(= goc BAC)

Suy ra:AD//BC(Vi gocDAC=gocACB hai goc so le trong)

Suy ra:ABCD là hình thang có đáy AD và BC

 Lik_e nha !

Trương Việt Hoàng
25 tháng 7 2016 lúc 7:47

Do ab=ac nên tam fiacs abc cân tại b suy ra góc BAC = góc BCA

Mà góc Bac = góc CAD (do AD là tia p/giác góc A)

Nên suy ra góc CAD = góc BCA

Mà hai góc này nằm ở vị trí so le trong của ad và bc cắt bởi ac nên ad // bc suy ra tứ giác abcd là hình thang

Oo Bản tình ca ác quỷ oO
25 tháng 7 2016 lúc 7:49

xét tam giác ABC có: AB = AC (gt)

=> tam giác ABC cân tại B

=> góc BAC = góc BCA

mà góc BAC = góc DAC (AC là phân giác của góc A)

=> góc DAC = góc BCA

=> AD//BC

=> tứ giác ABCD là hình thang

bài trong SGK dễ!!

57477677567568587876876968968976858467567856876989978056732524543

Nguyễn Thị Ngọc Hà
Xem chi tiết
Đặng Phương Thảo
4 tháng 8 2015 lúc 13:51

Vì \(\Delta ABC\) cân tại B ( vì AB =BC) 

=> Góc BAC = góc BCA (1) 

Vì AC là phân giác góc A 

=> góc BAC = góc CAD (2) 

Từ (1) và (2) => góc BCA = góc CAD 

Mà 2 góc này ở vị trí so le trong

=> AD // BC 

=>  ABCD là hình thang

Vậy ________________