SO SÁNH: \(\frac{10}{a^m}+\frac{10}{a^n}\)
với \(\frac{9}{a^m}+\frac{11}{a^n}\)
Cho a , m ,n thuộc N sao , Hãy So sánh :
\(A=\frac{10}{a^m}+\frac{10}{a^n}\&B=\frac{11}{a^m}+\frac{9}{a^n}\)
so sánh \(A=\frac{10}{a^m}+\frac{10}{a^n};B=\frac{11}{a^m}+\frac{9}{a^n}\)
So sánh: A=\(\frac{10}{a^m}+\frac{10}{a^n}\) và \(B=\frac{11}{a^m}+\frac{9}{a^n}\)
Cho a,m,n \(\in\)N* . Hãy so sánh A và B :
A = \(\frac{10}{a^m}+\frac{10}{a^n}\)
B = \(\frac{11}{a^m}+\frac{9}{a^n}\)
Cho a,m,n \(\in\) N*, hãy so sánh hai tổng sau : A= \(\frac{10}{a^m}+\frac{10}{a^n}\) và B= \(\frac{11}{a^m}+\frac{9}{a^n}\)
Dễ mà, bài này trên lớp cậu đã hỏi mình đâu ?
Giải
A = \(\left(\frac{10}{a^m}+\frac{9}{a^n}\right)+\frac{1}{a^n}\) ; B = \(\left(\frac{10}{a^m}+\frac{9}{a^n}\right)+\frac{1}{a^m}\)
Muốn so sánh A với B chỉ cần so sánh \(\frac{1}{a^m}\) và \(\frac{1}{a^n}\)
Xét các trường hợp:
TH1: a = 1 thì am=an do đó A=B
TH2: a \(\ne\) 1 thì xét m và n
- Nếu m = n thì am = an do đó A=B
- Nếu m < n thì am < an do đó \(\frac{1}{a^m}\) > \(\frac{1}{a^n}\) ; vậy A<B
- Nếu m > n thì am > an do đó \(\frac{1}{a^m}\) < \(\frac{1}{a^n}\) ; vậy A>B
vì đã chọn đúng cho việt quá 3 lần trong hai ngày !!!
câu mình Đúng 100% mà không được online math lựa chọn ! huhuhuhuhuh.....
Cho a,m,n \(\in\)N* . Hãy so sánh :A=\(\frac{10}{a^m}+\frac{10}{a^n}\)và B=\(\frac{11}{a^m}+\frac{9}{a^n}\)
( Ai giải mình mới tick nha )
A) So sánh :Cho a,m,n\(\in\) N*,hãy so sánh A và B:
\(a=\frac{10}{a^m}+\frac{10}{a^n}\) \(b=\frac{11}{a^m}+\frac{9}{a^n}\)
B) tìm x,biết \(\frac{x-1}{2011}+\frac{x-2}{2012}+\frac{x-3}{2013}=\frac{x-4}{2014}+\frac{x-5}{2015}+\frac{x-6}{2016}\)
B,
(1 - x-1/2011)+(1 - x-2/2012)+(1 - x-3/2013)=(1 - x-4/2014)+(1 - x-5/2015)+(1 - x-6/2016)
=> 2010-x/2011 + 2010-x/2012 + 2010-x/2013 = 2010-x/2014 + 2010-x/2015 + 2010-x/2016
=> 2010-x/2011 + 2010-x/2012 + 2010-x/2013 - 2010-x/2014 - 2010-x/2015 - 2010-x/2016=0
=>(2010-x).(1/2011 + 1/2012 + 1/2013 + 1/2014 - 1/2015 - 1/2016)=0
Mà: 1/2011 + 1/2012 + 1/2013 + 1/2014 - 1/2015 - 1/2016 khác 0
=> 2010-x=0
=>x=2010
a, 10/a^m > 11/a^m; 10/a^n > 9/a^n => A > B
b, bạn cộng 1 vào các phân số đưa VP qua VT đặt nhân tử chung x + 2010 thì trong ngoặc còn lại là số dương nên x + 2010 = 0
a. cho a,b,n là các số tự nhiên Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b.Hãy so sánh A= \(\frac{10^{11}-1}{10^{12}-1}\);B= \(\frac{10^{10}+1}{10^{11}+1}\)so sánh A và B
a, Cho A=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{99}+\frac{1}{100}\) . So Sánh A với 1
b, B=\(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\). So sánh B với \(\frac{1}{2}\)
c, cho M=\(\frac{2013}{2014}+\frac{2014}{2015}\)và N=\(\frac{2013+2014}{2014+2015}\). So sánh M và N
Câu a, p/s cuối cùng là \(\frac{1}{100}\)nha mí bn
a) Ta có :
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}\)
\(>\frac{1}{10}+\frac{1}{100}.90=\frac{1}{10}+\frac{90}{100}=1\)
vậy A > 1
b) \(B=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{20}\)
\(>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{1}{20}.10=\frac{1}{2}\)
Vậy B > \(\frac{1}{2}\)