Coi \(A=\frac{10}{a^m}+\frac{10}{a^n}=\frac{9}{a^m}+\frac{10}{a^n}+\frac{1}{a^m}\)
\(B=\frac{9}{a^m}+\frac{11}{a^n}=\frac{9}{a^m}+\frac{10}{a^n}+\frac{1}{a^n}\)
Cả A và B đều có: \(\frac{9}{a^m}+\frac{10}{a^n}\) nên ta so sánh \(\frac{1}{a^n}\)và\(\frac{1}{a^m}\)
TH1: n<m =>1/n>1/m
=>B>A
TH2:n>m=>1/n<1/m
=>B<A
TH3: m=n =>1/m=1/n
=> B=A
\(\frac{10}{a^m}+\frac{10}{a^n}=\left(\frac{9}{a^m}+\frac{10}{a^n}\right)+\frac{1}{a^m}\)
\(\frac{9}{a^m}+\frac{11}{a^n}=\left(\frac{9}{a^m}+\frac{10}{a^n}\right)+\frac{1}{a^n}\)
Muốn so sách 2 biểu thức trên ta chỉ cần so sánh \(\frac{1}{a^m}\) với \(\frac{1}{a^n}\)
Trường hợp 1: a=1 thì 2 biểu thức trên = nhau
Trường hợp 2: a khác 1 thì xét m và n
-Nếu m=n thì am=an => 2 biểu thức trên = nhau
-Nếu m<n thì am<an => \(\frac{1}{a^m}>\frac{1}{a^n}\)=> .....
-Nếu m>N thì am>an => \(\frac{1}{a^m}
Đinh Tuấn Việt 5 phút trước
$\frac{10}{a^m}+\frac{10}{a^n}=\left(\frac{9}{a^m}+\frac{10}{a^n}\right)+\frac{1}{a^m}$10am +10an =(9am +10an )+1am
$\frac{9}{a^m}+\frac{11}{a^n}=\left(\frac{9}{a^m}+\frac{10}{a^n}\right)+\frac{1}{a^n}$9am +11an =(9am +10an )+1an
Muốn so sách 2 biểu thức trên ta chỉ cần so sánh $\frac{1}{a^m}$1am với $\frac{1}{a^n}$1an
Trường hợp 1: a=1 thì 2 biểu thức trên = nhau
Trường hợp 2: a khác 1 thì xét m và n
-Nếu m=n thì am=an => 2 biểu thức trên = nhau
-Nếu m<n thì am<an => $\frac{1}{a^m}>\frac{1}{a^n}$1am >1an => .....
-Nếu m>N thì am>an => $\frac{1}{a^m}<\frac{1}{a^n}$1am <1an => ......
Đúng 0
Trần Thùy Dung 7 phút trước
Coi $A=\frac{10}{a^m}+\frac{10}{a^n}=\frac{9}{a^m}+\frac{10}{a^n}+\frac{1}{a^m}$A=10am +10an =9am +10an +1am
$B=\frac{9}{a^m}+\frac{11}{a^n}=\frac{9}{a^m}+\frac{10}{a^n}+\frac{1}{a^n}$B=9am +11an =9am +10an +1an
Cả A và B đều có: $\frac{9}{a^m}+\frac{10}{a^n}$9am +10an nên ta so sánh $\frac{1}{a^n}$1an và$\frac{1}{a^m}$1am
TH1: n<m =>1/n>1/m
=>B>A
TH2:n>m=>1/n<1/m
=>B<A
TH3: m=n =>1/m=1/n
=> B=A
mk ko thik kẻ coppy bài người khác