Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kiên-Messi-8A-Boy2k6
Xem chi tiết
Lâm Gia Huy
14 tháng 3 lúc 20:47

tao là fan CR7

Agent P
Xem chi tiết
trần ghi bu pha
23 tháng 11 2020 lúc 20:32

mod là j

Khách vãng lai đã xóa
Thượng Huyền Tam - Akaza
28 tháng 9 lúc 17:54

mod là viết tắt của module, là kiến thức liên quan đến đồng dư nha bạn

Nam
Xem chi tiết
Đỗ Thanh Tùng
7 tháng 7 2016 lúc 13:26

bài này của bạn trong câu hõi hay ngày hôm qua có 1 chị giải rồi á bạn vào xem nha

Nam
7 tháng 7 2016 lúc 13:32

bạn đó giải mik k hiểu cách làm

Hoàng Lê Bảo Ngọc
7 tháng 7 2016 lúc 14:24

Không hiểu sao bạn không hỏi? ^^ Mình sẽ trả lời bạn mà ^^

Đình Hiếu
Xem chi tiết
siêu trộm
18 tháng 3 2015 lúc 22:26

a là số tự nhiên > 0. giả sử có m,n > 0 ∈ Z để: 
2a + 1 = n^2 (1) 
3a +1 = m^2 (2) 
từ (1) => n lẻ, đặt: n = 2k+1, ta được: 
2a + 1 = 4k^2 + 4k + 1 = 4k(k+1) + 1 
=> a = 2k(k+1) 
vậy a chẵn . 
a chẳn => (3a +1) là số lẻ và từ (2) => m lẻ, đặt m = 2p + 1 
(1) + (2) được: 
5a + 2 = 4k(k+1) + 1 + 4p(p+1) + 1 
=> 5a = 4k(k+1) + 4p(p+1) 
mà 4k(k+1) và 4p(p+1) đều chia hết cho 8 => 5a chia hết cho 8 => a chia hết cho 8 
ta cần chứng minh a chia hết cho 5: 
chú ý: số chính phương chỉ có các chữ số tận cùng là; 0,1,4,5,6,9 
xét các trường hợp: 
a = 5q + 1=> n^2 = 2a+1 = 10q + 3 có chữ số tận cùng là 3 (vô lý) 
a =5q +2 => m^2 = 3a+1= 15q + 7 có chữ số tận cùng là 7 (vô lý) 
(vì a chẵn => q chẵn 15q tận cùng là 0 => 15q + 7 tận cùng là 7) 
a = 5q +3 => n^2 = 2a +1 = 10a + 7 có chữ số tận cùng là 7 (vô lý) 
a = 5q + 4 => m^2 = 3a + 1 = 15q + 13 có chữ số tận cùng là 3 (vô lý) 
=> a chia hết cho 5 
5,8 nguyên tố cùng nhau => a chia hết cho 5.8 = 40 
hay : a là bội số của 40

Mạnh Lê
4 tháng 4 2017 lúc 11:03

a = b(mod n) là công thức dùng để chỉ a,b có cùng số dư khi chia cho n, gọi là đồng dư thức .
Ta có các tính chất cua đồng dư thức và các tính chất sau: 
Cho x là số tự nhiên 
Nếu x lẻ thì =\(\Rightarrow\) x^2 =1 (mod 8) 
x2 =-1(mod 5) hoặc x= 0(mod 5) 
Nếu x chẵn thì x= \(-1\)(mod 5) hoặc x2 =1(mod 5) hoặc x= 0(mod 5) 
Vì 2a +1 và 3a+1 là số chính phương nên ta đặt 
3a+1=m^2 
2a+1 =n^2 
=> m^2 -n^2 =a (1) 
m^2 + n^2 =5a +2 (2) 
3n^2 -2m^2=1(rút a ra từ 2 pt rồi cho = nhau) (3) 
Từ (2) ta có (m^2 + n^2 )=2(mod 5) 
Kết hợp với tính chất ở trên ta => m^2=1(mod 5); n^2=1(mod 5) 
=> m^2-n^2 =0(mod 5) hay a chia hết cho 5 
từ pt ban đầu => n lẻ =>n^2=1(mod 8) 
=> 3n^2=3(mod 8) 
=> 3n^2 -1 = 2(mod 8) 
=> (3n^2 -1)/2 =1(mod 8) 
Từ (3) => m^2 = (3n^2 -1)/2 
do đó m^2 = 1(mod 8) 
ma n^2=1(mod 8) 
=> m^2 - n^2 =0 (mod 8) 
=> a chia hết cho 8 
Ta có a chia hết cho 8 và 5 và 5,8 nguyên tố cùng nhau nên a chia hết cho 40.Vậy a là bội của 40 
Nếu bạn không biết đồng dư thức thì .......:))

Nguyen Manh Cuong
1 tháng 4 2018 lúc 7:52

\(⋮\)

Aeris
Xem chi tiết
Thu Hang Vo Thi
8 tháng 1 2019 lúc 22:46

Bạn tham khảo bài làm của vài bn khác nhé ! ( Ấn vào Câu hỏi tương tự ý )

Mik phải đi ngủ rồi !

-Bye-

Tobot Z
Xem chi tiết
Đặng Viết Thái
26 tháng 3 2019 lúc 12:33

Vì 2n+1 là số chính phương lẻ nên

2n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)

Do đó: n⋮3

Vậy ta có đpcm.

Aug.21
26 tháng 3 2019 lúc 12:35

Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là các số chính phương thì n là bội của 24

Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ

⇒2n+1=1(mod8)⇒2n+1=1(mod8)

=> n ⋮⋮ 4

=> n chẵn

=> n+1 cũng là số lẻ

⇒n+1=1(mod8)⇒n+1=1(mod8)

=> n ⋮⋮ 8

Mặt khác :

3n+2=2(mod3)3n+2=2(mod3)

⇒(n+1)+(2n+1)=2(mod3)⇒(n+1)+(2n+1)=2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ

⇒n+1=2n+1=1(mod3)⇒n+1=2n+1=1(mod3)

=> n chia hết cho 3

Mà ( 3 ; 8 ) = 1

=> n chia hết cho 24

 Bạn tham khảo: !!!

TF girls
26 tháng 3 2019 lúc 12:43

Vì 2n-1 là số chính phương. Mà 2n-1 lẻ

\(\Rightarrow2n+1=1\left(mod8\right)\)

\(\Rightarrow n⋮4\)

\(\Rightarrow\)n chẵn

\(\Rightarrow n+1\)lẻ

\(\Rightarrow n+1=1\left(mod8\right)\)

\(\Rightarrow n⋮8\)

  Mặt khác

\(3n+2=2\left(mod3\right)\)

\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)

Mà n+1 và 2n+1 đều là các số chính phương lẻ

\(\Rightarrow n\text{+}1=2n\text{+}1=1\left(mod3\right)\)

\(\Rightarrow n⋮3\)

    Mà (3:8)=1

\(\Rightarrow n⋮24\)

NGUYỄN AN PHONG
Xem chi tiết
Trịnh Văn Đại
Xem chi tiết
Nguyễn Kim Huệ
27 tháng 4 2017 lúc 17:18

Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)

Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)

Từ (1),(2)(1),(2) có n⋮24n⋮24.

Đức Lộc
7 tháng 4 2019 lúc 15:46

Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)

Từ (1),(2)(1),(2) có n⋮24n⋮24.

HƯƠNG TRANG
Xem chi tiết