Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
OoO Kún Chảnh OoO
Xem chi tiết
Minh Hiền
30 tháng 1 2016 lúc 13:19

Ta có: \(\sqrt{\left(x-\sqrt{2}\right)^2}\ge0;\sqrt{\left(y+\sqrt{2}\right)^2}\ge0;\left|x+y+z\right|\ge0\)

Mà theo đề: \(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)

=> \(\sqrt{\left(x-\sqrt{2}\right)^2}=\sqrt{\left(y+\sqrt{2}\right)^2}=\left|x+y+z\right|=0\)

=> \(x-\sqrt{2}=y+\sqrt{2}=x+y+z=0\)

=> \(x=\sqrt{2};y=-\sqrt{2};z=0\).

OoO Kún Chảnh OoO
Xem chi tiết
Tam giác
Xem chi tiết
Lightning Farron
15 tháng 12 2016 lúc 21:10

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\)

Ta thấy: \(\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}\ge0\\\sqrt{\left(y+\sqrt{2}\right)^2}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|\ge0\)

\(\Rightarrow\begin{cases}\sqrt{\left(x-\sqrt{2}\right)^2}=0\\\sqrt{\left(y+\sqrt{2}\right)^2}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}\left|x-\sqrt{2}\right|=0\\\left|y+\sqrt{2}\right|=0\\\left|x+y+z\right|=0\end{cases}\)

\(\Rightarrow\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\\sqrt{2}+\left(-\sqrt{2}\right)+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\\z=0\end{cases}\)

Nguyễn Minh Quang
Xem chi tiết
o0o I am a studious pers...
8 tháng 8 2016 lúc 20:20

Bài này chỉ yêu cầu tìm x thôi đúng ko bạn .

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)

\(\Rightarrow\hept{\begin{cases}x-\sqrt{2}=0\\y-\sqrt{2}=0\\x+y+z=0\end{cases}\Rightarrow x=\sqrt{2}}\)

spiderman
Xem chi tiết
Thu Nguyễn
Xem chi tiết
Mỹ Lệ
Xem chi tiết
Phùng Gia Bảo
Xem chi tiết
Trihuynh
Xem chi tiết