Cho lục giác đều ABCDEF, M và N theo thứ tự là trung điểm của CD, DE. Gọi I là giao điểm của AM và BN. Tính góc AIB
Giúp với!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho lục giác đều ABCDEF, M và N theo thứ tự là trung điểm của CD, DE. Gọi I là giao điểm của AM và BN. Tính góc AIB
Cho lục giác đều ABCDEF, M và N theo thứ tự là trung điểm của CD, DE. Gọi I là giao điểm của AM và BN. Tính góc AIB
Cho lục giác đều ABCDEF, M và N theo thứ tự là trung điểm của CD, DE. Gọi I là giao điểm của AM và BN. Tính góc AIB
Giúp với!!!!!!!!!! Không làm được bài này chắc mình chết mất
Cho lục giác đều ABCDEF, M và N theo thứ tự là trung điểm của CD, DE. Gọi I là giao điểm của AM và BN. Tính góc AIB
Cho tam giác ABC có đường trung tuyến BD. Trên tia đối của tia DB lấy điểm E sao cho DE=DB. Gọi M và N theo thứ tự là trung điểm của BC và CE. Gọi I và K theo thứ tự là giao điểm của AM và AN với BE. Chứng minh rằng: BI=IK=KE
Cho tam giác ABC có góc A khác 90 độ và các góc B , C nhọn , đường cao AH. Vẽ các điểm D vá E sao cho AB là đường trung trực HD và AC là đường trung trực của HE.Gọi I và K theo thứ tự là giao điểm của DE với AB và AC . Tính góc AIC và góc AKB
gọi giao điểm của AB vs DH là N; giao điểm của AC vs EH là M
xét tam giác DIN và tam giác HIN = nhau(c.g.c) suy ra IN hay IB là phân giác góc DIH
xét tam giác MKH và tam giác MKE = nhau (c.g.c) suy ra kc là phân giác góc MKE
ta lại có HA là phân giác góc HIK( NA,MA là phân giác góc ngoài)
mà góc AHC=90 độ(gt) suy ra HC là phân giác góc ngoài tam giác HIK tại đỉnh H
mà KC là phân giác góc ngoài tam giác HIK tại đỉnh K
suy ra IC là phân giác góc KIH
mà IB là phân giác góc DIH
góc KIH + góc DIH=180 độ( kề bù) suy ra góc BIC=90 độ
suy ra góc AIC=90 độ
góc AKB cm tương tự = 90 độ
tuy mk ko biết chắc cách giải nhưng mk chắc bạn Đức làm sai rồi!
$\large\Delta{ADB} = \large\Delta{AEC} (c.g.c)$ (bạn tự chứng minh 2 tam giác này bằng nhau nhé!)
\Rightarrow $\widehat{BAD} = \widehat{EAC}$ (cặp góc tương ứng) (1)
Trên tia đối của tia DA lấy O sao cho DA = DO.
\Rightarrow $\large\Delta{ADE} = \large\Delta{ODB}$ (tự CMinh)
\Rightarrow $\hat{BOD} = \hat{DAE}$ (cặp góc tương ứng) ; AE = BO (cặp cạnh tương ứng)
Ta có :
$\hat{AEC} > \hat{ABE}$ (vì $\hat{AEC}$ là góc ngoài tại đỉnh E của tam giác AEB)
\Rightarrow $\hat{AEC} > \hat{ACE}$ (vì $\hat{ABC} = \hat{ACB}$ do tam giác ABC cân tại A)
\Rightarrow AC > AE (Quan hệ giữa cạnh và góc đối diện trong tam giác)
\Rightarrow AB > BO
\Rightarrow $\hat{BOD} > \hat{BAD}$ (quan hẹ giữa cạnh và góc đối diện trong tam giác)
\Rightarrow $\hat{DAE} > \hat{BAD}$ (2)
Từ (1) và (2) \Rightarrow đpcm
cho hình chữ nhật ABCD có AB=2AD . gọi E,F theo thứ tự là trung điểm của AB,CD gọi M là giao điểm của AF và DE , N là giao điểm cuả BF và CE .
a) Tứ giác ADFE là hình j ? Vì sao ?
b) Tứ giác EMFN là hình j ? vì sao ?
Cho tam giac ABC cân tại A. Trên tia đối của các tia BC và CB lấy 2 điểm theo thứ tự D và E : BD = CE
a) Cm : tam giác ADE là tam giác cân
b) Gọi M là trung điểm của BC . CM : AM là tia phân giác của góc DAE
c) Từ B và C vẽ BH và CK theo thứ tự vuông góc với AD và AE. Cm: BH = CK
Cho hình bình hành ABCD có BC=2AB.Gọi M,N thứ tự là trung điểm của BC và AD.Gọi P là giao điểm của AM với BN,Q là giao điểm của MD với CN,K là giao điểm của tia BN với tia CD
a)Chứng minh tứ giác MDKB là hình vuông
b)Tứ giác PMQN là hình gì ? Vì sao ?
c)Hình bình hành ABCD có thêm điều kiện gì để PMQN là hình vuông ?
b: Xét tứ giác MCNA có
MC//NA
MC=NA
Do đó: MCNA là hình bình hành
Suy ra: MA//NC và MA=NC(2)
hay MP//NQ(1)
Xét tứ giác BMNA có
BM//NA
BM=NA
Do đó: BMNA là hình bình hành
Suy ra: BN và MA cắt nhau tại trung điểm của mỗi đường
hay P là trung điểm của MA
=>PM=MA/2(3)
Xét tứ giác MCDN có
MC//DN
MC=DN
Do đó: MCDN là hình bình hành
Suy ra: MD và CN cắt nhau tại trung điểm của mỗi đường
=>Q là trung điểm của CN
=>NQ=CN/2(4)
Từ (2), (3) và (4) suy ra MP//NQ(5)
Từ (1) và (5) suy ra MPNQ là hình bình hành(6)
Xét hình bình hành BMNA có BM=BA
nên BMNA là hình thoi
=>BN⊥MA
hay \(\widehat{MPN}=90^0\)(7)
Từ (6) và (7) suy ra PMQN là hình chữ nhật
c: Để hình chữ nhật PMQN là hình vuông thì MP=PN
=>BN=MA
=>BMNA là hình vuông
=>\(\widehat{ABC}=90^0\)