Tìm các số tự nhiên x , y , t biết
x + y + t = x × y × t
tìm hai số tự nhiên x và y,biết
x< 17/4<y
Cho biểu thức M=\(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\)tìm x,y,z,t là các số tự nhiên khác 0, Chứng minh M10<1025
Cho x,y,z là các số tự nhiên khác 0. CMR : x/x+y+z + y/x+y+t + z/y+z+t + t/x+z+t có giá trị không phải là số tự nhiên
Đặt A=x/x+y+z + y/x+y+t + z/y+z+t +t/x+z+t
-Chứng minh biểu thức nhỏ hơn 2 .
Ta có: A<x+t/x+y+z+t + y+z/x+y+t+z + z+x/y+z+t+x + t+y/x+t+y+z
A<x+t+y+z+z+x+t+y/x+y+t+z
A<2(x+t+y+z)/x+y+t+z
A<2
-Chứng minh biêu thức lớn hơn 1
A>x/x+y+t+z + y/x+y+t+z + t/x+y+z+t + z/x+y+t+z
A>x+y+t+z/z+x+y+t
A>1
Mà 1<A<2
Suy ra A không phải là STN
Có gì sai thì bạn sửa nhé
cho x,y,z,t là các số tự nhiên khác 0 ta có
M=x/(x+y+z)+y/(x+y+t)+z/(y+z+t)+t/(x+z+t)
CMR M không là số tự nhiên khác 0
Ta có: \(\frac{x}{x+y+z}>\frac{x}{x+y+z+t}\)
\(\frac{y}{x+y+t}>\frac{y}{x+y+z+t}\)
\(\frac{z}{y+z+t}>\frac{z}{x+y+z+t}\)
\(\frac{t}{x+z+t}>\frac{t}{x+y+z+t}\)
=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}\)
=>\(M>\frac{x+y+z+t}{x+y+z+t}=1\)
=>M>1(1)
Lại có:
Áp dụng tính chất: Nếu \(\frac{a}{b}<1=>\frac{a}{b}<\frac{a+m}{b+m}\)
Ta có: \(\frac{x}{x+y+z}<\frac{x+t}{x+y+z+t}\)
\(\frac{y}{x+y+t}<\frac{y+z}{x+y+z+t}\)
\(\frac{z}{y+z+t}<\frac{z+x}{x+y+z+t}\)
\(\frac{t}{x+z+t}<\frac{t+y}{x+y+z+t}\)
=>\(M=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}<\frac{x+t}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+x}{x+y+z+t}+\frac{t+y}{x+y+z+t}\)
=>\(M<\frac{2.\left(x+y+z+t\right)}{x+y+z+t}=2\)
=>M<2(2)
Từ (1) và (2)
=>1<M<2
=>M không là số tự nhiên
=>ĐPCM
Cho x,y,z,t là các số tự nhiên khác 0
C/m: \(A=\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\) không là số tự nhiên.
Vô đây: http://olm.vn/hoi-dap/question/300416.html
Bài đung 100%
tìm các số tự nhiên x,y,z,t,u biết 2<x<y<z<u<t thỏa mãn 1/x+1/y+1/z+1/u+1/t=1
cho x,y,z,t là các số tự nhiên khác 0 ta có
M=x/(x+y+z)+y/(x+y+t)+z/(y+z+t)+t/(x+z+t)
CMR M là số tự nhiên khác 0
Làm rõ ràng cho mình nhé xin đấy
nhấn vào chữ Đúng 0 sẽ có lời giải hiện ra
Cho các số tự nhiên x,y,z,t.
Tìm phần nguyên \([P]\)biết : \(P=\frac{x}{x+y+z}+\frac{y}{x+z+t}+\frac{z}{y+z+t}+\frac{t}{z+t+x}\)
Banj oiw
ban xem de ki lai lan nx xem co sai de k
Cho biểu thức M = \(\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\) với x,y,z,t là các số tự nhiên khác 0 . Chứng minh \(M^{10}< 1025\)