\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)và xyz=20
Tìm x,y,z biết \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)và xyz = 20, xy = 112
Tìm x, y, z biết:
\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) và xyz =20
Đặt x/12 = y/9 = z/5 = k ta có:
x = 12k
y = 9k
z = 5k
=> x.y.z = 12k.9k.5k
=> k^3.540=20
=> k^3 = 1/27
=> k^3= (1/3)^3
=> k = 1/3
x/12=1/3 => x=4
y/9= 1/3 => y=3
z/5=1/3 =. z=5/3
Gọi \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Rightarrow x=12k;y=9k;z=5k\)
\(\Rightarrow xyz=12k.9k.5k=540k^3=20\)
\(\Rightarrow k^3=\frac{20}{540}=\frac{1}{27}=\left(\frac{1}{3}\right)^3\)
\(\Rightarrow k=\frac{1}{3}\)
\(\Rightarrow\frac{x}{12}=\frac{1}{3}\Rightarrow x=\frac{1}{3}.12=4\)
\(\frac{y}{9}=\frac{1}{3}\Rightarrow y=\frac{1}{3}.9=3\)
\(\frac{z}{5}=\frac{1}{3}\Rightarrow z=\frac{1}{3}.5=\frac{5}{3}\)
Vậy \(x=4;y=3;z=\frac{5}{3}\)
Tìm x, y, z biết:\(\frac{15}{x-9}=\frac{20}{y-12}=\frac{40}{z-21}\)và xyz = 1200
Tìm x,y,z biết :
a)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x-2y+3z=-10
b)5x=8y=20z và x-y-z =3
c)\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) và xyz=20
d)\(\frac{2x}{3}=\frac{3y}{4}\frac{4z}{5}\) và x+y+x=-19
Tìm x,y,x biết
\(a.\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}\)và \(x+y+z=49\)
\(b.\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\)và \(2x+3y-z=186\)
\(c.x:y:z=12:9:5\)và \(xyz=20\)
\(d.\frac{10}{x-5}=\frac{6}{y-9}=\frac{14}{z-21}\)và \(xyz=6720\)
\(e.\frac{x+16}{9}=\frac{y-25}{16}=\frac{z+9}{25}\)và \(2x^3-1=15\)
\(a,\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}\)và x + y + z = 49
Ta có : \(\frac{2x}{3}=\frac{2y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{2}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{2}+\frac{5}{4}}=\frac{49}{\frac{19}{4}}=49\cdot\frac{4}{19}=\frac{196}{19}\)
Vậy : \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=\frac{196}{19}\\\frac{y}{\frac{4}{2}}=\frac{196}{19}\\\frac{z}{\frac{5}{4}}=\frac{169}{14}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{294}{19}\\y=\frac{392}{19}\\z=\frac{245}{19}\end{cases}}\)
\(b,\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\)và 2x + 3y - z = 186
Ta có : \(\frac{x}{y}=\frac{3}{4};\frac{y}{z}=\frac{5}{7}\Leftrightarrow\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
\(\Leftrightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)
Vậy : \(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}\)
\(c,x:y:z=12:9:5\)và xyz = 20
Ta có : \(x:y:z=12:9:5\)hay \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)
Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Leftrightarrow\hept{\begin{cases}x=12k\\y=9k\\z=5k\end{cases}}\)
\(\Leftrightarrow xyz=12k\cdot9k\cdot5k=540k^3\)
\(\Leftrightarrow xyz=540k^3\)
\(\Leftrightarrow540k^3=xyz\)
\(\Leftrightarrow540k^3=20\)
\(\Leftrightarrow k^3=\frac{20}{540}=\frac{1}{27}\Leftrightarrow k=\frac{1}{3}\)
Vậy : \(\hept{\begin{cases}x=12\cdot\frac{1}{3}\\y=9\cdot\frac{1}{3}\\z=5\cdot\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=\frac{5}{3}\end{cases}}\)
Tìm x, y, z biết :
1) \(\frac{x}{y}=\frac{9}{7},\frac{y}{z}=\frac{7}{3}\) và \(x-y+z=-15\)
2) \(\frac{x}{y}=\frac{7}{20},\frac{y}{z}=\frac{5}{8}\) và \(2x+5y-2z\)
3) \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) và \(xyz=20\)
2) Đề thiếu rồi bạn.
3)
Ta có:
\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) và \(x.y.z=20\)
Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\Rightarrow\left\{{}\begin{matrix}x=12k\\y=9k\\z=5k\end{matrix}\right.\)
Có: \(x.y.z=20\)
=> \(12k.9k.5k=20\)
=> \(540.k^3=20\)
=> \(k^3=20:540\)
=> \(k^3=\frac{1}{27}\)
=> \(k=\frac{1}{3}.\)
Với \(k=\frac{1}{3}.\)
\(\Rightarrow\left\{{}\begin{matrix}x=12.\frac{1}{3}=4\\y=9.\frac{1}{3}=3\\z=5.\frac{1}{3}=\frac{5}{3}\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(4;3;\frac{5}{3}\right).\)
Chúc bạn học tốt!
Tìm x , y ,z biết :
a) \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và \(-x+y+z=-120\)
b) \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\) và \(xyz=20\)
c) \(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}\) và \(x+y+z=48\)
b) Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)
\(\Rightarrow x=12k,y=9k,z=5k\)
\(xyz=20\)
\(\Rightarrow12k.9k.5k=20\)
\(\Rightarrow540k^3=20\)
\(\Rightarrow k^3=\frac{1}{27}\)
\(\Rightarrow k=\frac{1}{3}\)
Khi \(k=\frac{1}{3}\)
\(\Rightarrow\frac{x}{12}=\frac{1}{3}\Rightarrow x=4\)
\(\frac{y}{9}=\frac{1}{3}\Rightarrow y=3\)
\(\frac{z}{5}=\frac{1}{3}\Rightarrow z=\frac{5}{3}\)
Vậy x = ..... ; y = ............ ; z = .............
Bài 1 : Tìm x,y,z biết:
a, \(\frac{x}{5}=\frac{y}{2}\)và \(x\cdot y=160\)
b, \(\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{6}\)và \(5z-3x-4y=50\)
c,\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)và \(xyz=20\)
Mình đang cần gấp, mong mn giúp đỡ
a) ĐẶT \(\frac{x}{5}=\frac{y}{2}=k;\frac{x}{5}=k\Rightarrow x=5k;\frac{y}{2}=k\Rightarrow y=2k\)
ta có \(x.y=160\)
thay\(5k.2k=160\)
\(k^2.10=160\)
\(k^2=16\)
\(\Rightarrow k=\pm4\)
do đó
\(\frac{x}{5}=\pm4\Rightarrow\hept{\begin{cases}\frac{x}{5}=4\\\frac{x}{5}=-4\end{cases}\Leftrightarrow\hept{\begin{cases}x=5.4=20\\x=5.\left(-4\right)=-20\end{cases}}}\)
\(\frac{y}{2}=\pm4\Rightarrow\hept{\begin{cases}\frac{y}{2}=4\\\frac{y}{2}=-4\end{cases}\Leftrightarrow\hept{\begin{cases}y=2.4=8\\y=2.\left(-4\right)=-8\end{cases}}}\)
vậy các x,y thỏa mãn là \(\left\{x=20;y=8\right\}\left\{x=-20;y=-8\right\}\)
a) X*Y=160
=>X=160/Y (1)
X/5 =Y/2
=> 2x=5y(tính chất tỉ lệ thức)
=>x=5Y/2 (2)
(1),(2)=> 160/y = 5y/2
=> y=8
b) Ta có : \(\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{6}\)
\(\Rightarrow\frac{3x-3}{6}=\frac{4y-12}{16}=\frac{5z-25}{30}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-5}{6}=\frac{3x-3}{6}=\frac{4y-12}{16}=\frac{5z-25}{30}=\frac{5z-25-3x+3-4y+12}{30-6-16}\) \(=\frac{\left(5z-3x-4y\right)-10}{8}=\frac{50-10}{8}=\frac{40}{8}=5\)
\(\Rightarrow\hept{\begin{cases}x-1=10\\x-3=20\\x-5=30\end{cases}\Rightarrow\hept{\begin{cases}x=11\\y=23\\z=35\end{cases}}}\)
c) Đặt \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=12k\\y=9k\\z=5k\end{cases}}\)
Khi đó xyz = 20
<=> 12k.9k.5k = 20
=> 540k3 = 20
=> \(k^3=\frac{1}{27}\)
\(\Rightarrow k=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}x=12.\frac{1}{3}=4\\y=9.\frac{1}{3}=3\\z=5.\frac{1}{3}=\frac{5}{3}\end{cases}}\)
Tìm x, y, z biết :
a. 5x = 8y = 20z và x - y -z = 3
b. \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\)Và -x + y + z = 120
c.\(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}\)Và x X y X z = 20
d. x . y = -30 ; y . z = 42 và z - x = -12
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3