chứng minh n.(n+1).(n+2) chia het cho 6
chứng minh 5^n(5^n+1)-6^n(3^n+2) chia het cho 91
khai triển ra, ta dc:
25^n+5^n-18^n-12^n (1)
=(25^n-18^n)-(12^n-5^n)
=(25-18)K-(12-5)H = 7(K-H) chia hết cho 7
.giải thích: 25^n-18^n=(25-18)[25^(n-1)+ 25^(n-2).18^1 +.....+18^n]=7K vì đặt K là [25^(n-1)+ 25^(n-2).18^1 +.....+18^n, cái (12-5)
H cx tương tự
Biểu thức đó đã chia hết cho 7 rồi, bây h cần chứng minh biểu thức đó chia hết cho 13 là xong
từ (1) nhóm ngược lại để chia hết cho 13. Cụ thể là (25^n-12^n)-(18^n-5^n) chia hết cho 13, cách chứng minh chia hết cho 13 này cx tương tự như cách c.minh chia hết cho 7
Mà biểu thức này vừa chia hết cho 7, vừa chia hết cho 13 nên chia hết cho (7.13)=91
Tim n thuoc N ,biet
a) 8 chia het cho (n-2)
b)(2.n+1) chia het cho (6-n)
c)3.n chia het cho (n-1)
d)(3.n+5) chia het cho (2.n+1)
Cac bn giup minh nhe !!
1.chung minh rang:3n.(n+1)chia het cho 6(n thuoc N
2.cmr 5n.(n+1).(n+2) chia het cho 30(n thuocN)
3.tim so tu nhien n de 7.(n-1) chia het cho 4
4.tim so tu nhien n de 5.( n-2) chia het cho 3
chứng minh rằng
n.(n+1).(n+2)chia het 6
cho n là 2 thì:
2.(2+1).(2+2)=12
=>n.(n+1).(n+2) sẽ chia hết cho 6
n(n+1)(n+2)=(n2+n)(n+2)=23+2n2+n2+2n =(n3-n)+n2(2+1)+(2n+n) =n(n2-1)+n2.3+3n =n(n^2-1)+3n(n+1)
Ta cần chứng minh n(n2-1) chia hết cho 6
Nếu n chia hết cho 3 => n(n2-1) chia hết cho3
Nếu n ko chia hết cho 3 => n2 chia 3 dư 1 => n2-1 chia hết cho 3
=>n(n2-1) chia hết cho 3 với moi n
Nếu n chẵn =>n(n^2-1) chia hết cho 2
Nếu n lẻ => n2 -1 chẵn => n(n2-1) chia hết cho 2
(2;3)=1 => n(n2-1) chia hết cho 6
Ta thấy 3n(n+1) có một tích là 2 số tự nhiên tiếp tiếp với một số là 3
=> 3n(n+1) chia hết cho 6
=> n(n2-1)+3n(n+1) chia hết cho 6 hay n(n+1)(n+2) chia hết cho 6
1.Chứng minh rằng
a)n(n+1) chia hết cho 2
b)n(n+1)(n+2) chia hết cho 3
c)n(n+1)(2n+1) chia het cho 3
2.Cho abc +deg chia het cho 37
chung minh abcdeg chia het cho 37
giải nhanh hộ minh nhé
cho a va b la hai so tu nhien. biet a chia cho 5 du 1 ; b chia cho 5 du 4. chung minh (b-a)(b+a) chia cho 4
chung minh 2n^2(n+1)-2n(n^2+n-3) chia het cho 6 voi moi so nguyen n
chung minh n( 3-2n)-(n-1)(1+4n)-1 chia het cho 6 voi moi so nguyen n
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
Chứng minh rằng
a,5^5 - 5^4 + 5^3 chia het cho 7
7^6 : 7^5 - 7^4 chia het cho 11
10^6 - 5^7 chia het cho 59
10^9 + 10^8 10^7 chia het 22
3 + 2 +3 + 2 chia het cho 10 n thuoc n*
chung to rang :
a) 7.8.9.10 + 2.3.4.5.6 + 30 chia het cho 5
b) 2^3+2^4+2^5+2^6 chia het cho 3
c) 2^3+2^4+2^5+2^6 chia het cho 6
d) n.(n+215) chia het cho 2
e) (n+1).(n+2) chia het cho 2
g) 2016.n + 27 chia het cho 9
h)1.2.3+3.41+450 chia het cho 3
i) 3^3+3^4+3^5+3^6+3^7+3^8 chia het cho 4
k) 3^3+3^4+3^5+3^6+3^7+3^8 chia het cho 13
MONG CAC BAN GIUP MINH ,MINH RAT GAP!
chung minh A= 2 + 2^2 +2^3 +2^4 +.........+2^60 chia het cho 7
tim so tu nhien n de : n+4 chia het cho n+1
chung minh ( 1+2 +2^2 +2^3+2^4+2^5+2^6+2^7) chia het cho 3
1. A = 2 + 22 + 23 + 24 + ... + 260
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 258 + 259 + 260 )
A = 2 ( 1 + 2 + 22 ) + 24 ( 1 + 2 + 22 ) + ... + 258 ( 1 + 2 + 22 )
A = 2 . 7 + 24 . 7 + ... + 258 . 7
A = ( 2 + 24 + ... + 258 ) . 7 => A \(⋮\)7
Vậy ...
2.Ta có : \(n+4⋮n+1\)
Mà : \(n+1⋮n+1\)
\(\Rightarrow\left(n+4\right)-\left(n+1\right)⋮n+1\Rightarrow n+4-n-1⋮n+1\)
\(\Rightarrow3⋮n+1\Rightarrow n+1\in\left\{1;3\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
3. Đặt B = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
B = ( 1 + 2 ) + ( 22 + 23 ) + ( 24 + 25 ) + ( 26 + 27 )
B = ( 1 + 2 ) + 22 ( 1 + 2 ) + 24 ( 1 + 2 ) + 26 ( 1 + 2 )
B = 1 . 3 + 22 . 3 + 24 . 3 + 26 . 3
B = ( 1 + 22 + 24 + 26 ) . 3 \(\Rightarrow\) B \(⋮\)3
Vậy ...