55 . 22 . 5 + 4 . 89 . 52 - 32 . 102
a) Tính tổng: A= 12+22+32+...+102
b) Tính theo cách hợp lí tổng B= 52+102+152+...+502
\(A=1^2+2^2+3^2+....+10^2\\ A=1^{ }+\left(1+1\right)\cdot2+3\cdot\left(2+1\right)+.....+10\cdot\left(9+1\right)\\ A=1+2\cdot1+2+3\cdot2+3+....+10\cdot9+10\\ A=\left(1+2+3...+10\right)+\left(1\cdot2+3\cdot2+.....+10\cdot9\right)\)
Gọi 1+2+3+...+10 là P
Số số hạng là: (10 - 1) : 1 +1 = 10 (số)
P = (10+1) . 10 : 2 = 55
P = 55
Gọi \(1\cdot2+2\cdot3+....+9\cdot10\) là C
\(C=1\cdot2+2\cdot3+....+9\cdot10\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+....+9\cdot10\cdot3\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+....+9\cdot10\cdot\left(11-8\right)\\ 3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+.....+9\cdot10\cdot11-8\cdot9\cdot10\\ 3\cdot C=9\cdot10\cdot11\\ 3\cdot C=990\\ C=330\)
\(=>A=P+C\\ =>A=55+330\\ A=385\)
b)
\(B=5^2+10^2+15^2+...+50^2\\ B=5^2+\left(2\cdot5\right)^2+\left(3\cdot5\right)^2+....+\left(5\cdot10\right)^2\\ B=5^2+2^2\cdot5^2+3^2\cdot5^2+...+5^2\cdot10^2\\ B=5^2\cdot\left(1+2^2+3^2+....+10^2\right)\\ B=25\cdot\left(1+2^2+3^2+....+10^2\right)\)
\(\left(1+2^2+3^2+....+10^2\right)=A\)
\(=>B=25\cdot A\\ B=25\cdot385\\ B=9625\)
1+2+3+4+5+6+9+89+32+55=
1 + 2 + 3 + 4 + 5 + 6 + 9 + 89 + 32 + 55
= 3 + 3 + 4 + 5 + 6 + 9 + 89 + 32 + 55
= 6 + 4 + 5 + 6 + 9 + 89 + 32 + 55
= 10 + 5 + 6 + 9 + 89 + 32 + 55
= 15 + 6 + 9 + 89 + 32 + 55
= 21 + 9 + 89 + 32 + 55
= 30 + 89 + 32 + 55
= 119 + 32 + 55
= 151 + 55
= 206
Cho biết: 1 2 + 2 2 + 3 2 + . . . + 10 2 = 385
Tính nhanh giá trị của biểu thức sau S = 12 2 + 14 2 + 16 2 + 18 2 + 20 2 - 1 2 + 3 2 + 5 2 + 7 2 + 9 2
A. 1155
B. 5511
C. 5151
D. 1515
(102+82+62+42+22)−(12+32+52+72+92)
Tính nhanh giúp vs ak
\(\left(102+82+62+42+22\right)-\left(12+32+53+72+92\right)\)
\(=102+82+62+42+22-12-32-52-72-92\)
\(=\left(102-92\right)+\left(82-72\right)+\left(62-52\right)+\left(42-32\right)+\left(22-12\right)\)
\(=10+10+10+10+10\)
\(=10.5\)
\(=50\)
Điền vào ô vuông các dấu thích hợp (=; <; >):
a) 2 3 . 5 + 3 4 . 2 - 4 . ( 5 7 : 5 5 ) □ 15 : ( 3 5 : 3 4 ) + 5 . 2 4 - 7 2 - 4 ;
b) ( 3 5 . 3 7 ) : 3 1 0 + 5 . 2 4 □ 5 . 2 2 . 2 3 - 4 . ( 5 8 : 5 6 ) ;
c) 2 [ ( 7 - 3 3 : 3 2 ) : 2 2 + 99 ] - 100 □ 3 4 . 2 + 2 3 . 5 - 7 ( 5 2 - 5 ) ;
d) 207 : { 2 ^ 3 . [ ( 156 - 128 ) : 14 ] + 7 ] □ 117 : { [ 79 - 3 ( 3 ^ 3 - 17 ) ] : 7 + 2 }
Tính các tổng sau:
1, S=1-2+3_4+..+25-26
2, S=1-3+5-7+...+49-51
3, S=-1+3-5+7-...-53+55
4, S=2-4+6-8+...+22-24
5, S=-2+4-6+8-...-26+28
6, S=2-5+8-11+...-29+32
7, S=-1+5-9-13-...-41-45
8, S=1-5+9-13+...++89-93
9, S=2-4+6-8+...+202-204
10, S=1-6=11-16+21-26+...+171-176
huhu giúp mình với ạ 2h chiều nay mình phải nộp r =(((
Tính các tổng sau:
1, S=1-2+3_4+..+25-26
S =-1+3-5+7-...-53+55 ( có 28 số hạng )
= (-1+3)+(-5+7)+...+(-53+55) ( có 28:2=14 nhóm )
= 2+2+...+2
= 2 . 14
= 28
3
S =-1+3-5+7-...-53+55 ( có 28 số hạng )
= (-1+3)+(-5+7)+...+(-53+55) ( có 28:2=14 nhóm )
= 2+2+...+2
= 2 . 14
= 28
Tính
a) 22+36= 96−32= 62−30=
89–47= 44+44= 45−5=
b) 32+3−2= 56−20−4= 23+14−15=
a) 22+36=58 96−32=64 62−30=32
89−47=42 44+44=88 45−5=40
a. (+18) + (+2) b. (-3) + 13 c. (-12) + (-21) d. (-30) + (-23)
e. -52 + 102 f. 88 + (-23) g. 13 + |-13| h. -43 – 26
k. (-89) – 9 l. 28 + 42 m. (-56) + |-32| n. 40 – |-14|
o. |-4| + |+15| p. |30| – |-17|
a. (+18) + (+2)= 20
b. (-3)+13= 11
c. (-12)+(-21)=-33
d. (-30)+(-23)=-53
e. -52+102=50
f. 88+(-23)=65
g. 13+|-13|=26
h. -43-26=-69
k. (-89)-9=-98
m. -56+|-32|=-24
n. 40 -|-14|=26
o. |-4|+|+15|=19
p. |30|-|-17|=13
Chứng minh rằng:
A = 1/3 + 1/32 + 1/33 + ..........+ 1/399 < 1/2
B = 3/12x 22 + 5/22 x 32 + 7/32 x 42 +............+ 19/92 x 102 < 1
C = 1/3 + 2/32 + 3/33 + 4/34 +.........+ 100/3100 ≤ 0
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)
\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)
\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)
1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20 * 21 * 22 * 23 * 24 * 25 * 26 * 27 * 28 * 29 * 30 * 31 * 32 * 33 * 34 * 35 * 36 * 37 * 38 * 39 * 40 * 41 * 42 * 43 * 44 * 45 * 46 * 47 * 48 * 49 * 50 * 51 * 52 * 53 * 54 * 55 * 56 * 57 * 58 * 59 * 60 * 61 * 62 * 63 * 64 * 65 * 66 * 67 * 68 * 69 * 70 * 71 * 72 * 73 * 74 * 75 * 76 * 77 * 78 * 79 * 80 * 81 * 82 * 83 * 84 * 85 * 86 * 87 * 88 * 89 * 90 * 91 * 92 * 93 * 94 * 95 * 96 * 97 * 98 * 99 * 100 bằng bao nhiêu?