Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen Thuy
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 2 2022 lúc 7:52

a: Để A là số tự nhiên thì \(\left\{{}\begin{matrix}3n+5⋮2n+1\\n\ge-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6n+3+7⋮2n+1\\n\ge-\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1\in\left\{1;-1;7;-7\right\}\\n\ge-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow n\in\left\{0;3\right\}\)

b: Để B là số nguyên âm thì \(\left\{{}\begin{matrix}4n+1\inƯ\left(10\right)\\n< =-\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4n+1\in\left\{1;-1;5;-5\right\}\\n< =-\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow n=-\dfrac{3}{2}\)

soái cưa Vương Nguyên
Xem chi tiết
Nguyễn Thành Đạt
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
17 tháng 1 2018 lúc 17:31

Đáp án cần chọn là: C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 10 2019 lúc 18:14

Đáp án cần chọn là: D

Công Nghiêm Chí
Xem chi tiết
Cấn Thị Vân Anh
27 tháng 5 2022 lúc 21:12

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40

Ngo Thi Thuy
Xem chi tiết
Tung Pham
13 tháng 12 2017 lúc 22:32

mình ko biet làm nha

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 3 2018 lúc 14:19

b) n = 0 ta có: 3n + 6 = 30 + 6 = 7 là số nguyên tố

n ≠ 0 ta có 3n ⋮ 3 ; 6 ⋮ 3 nên 3n + 6 ⋮ 3 ; 3n + 6 > 3

Số 3n + 6 là hợp số vì ngoài ước 1 và chính nó còn có ước là 3.

Vậy với n = 0 thì 3n + 6 là số nguyên tố.

vulethaibinh
Xem chi tiết
Hiếu
8 tháng 3 2018 lúc 20:22

\(\frac{6n+9}{3n}=2+\frac{9}{3n}=2+\frac{3}{n}\in N\) 

=> \(n\inƯ\left(3\right)=\left\{1;3\right\}\)

Mi Mi
Xem chi tiết

a: \(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

b: \(n^3-3n^2-3n-1⋮n^2+n+1\)

=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)

=>\(3⋮n^2+n+1\)

=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)

mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)

nên \(n^2+n+1\in\left\{1;3\right\}\)

=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)