Tìm x , biết : \(x+\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}=1\)
Tính:
a) \(A=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{49.51}\)
b) \(B=\frac{1}{2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
Ai nhanh mình tick cho
a, Ta có \(A=\frac{3}{3.5}+\frac{3}{5.7}+....+\frac{3}{49.51}\)
\(=\frac{3}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{2}{49.51}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{3}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}-\frac{3}{102}=\frac{48}{102}=\frac{24}{51}\)
b,Ta có \(\frac{1}{2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
\(=\frac{2-1}{2}+\frac{4-2}{2.4}+\frac{7-4}{4.7}+\frac{11-7}{7.11}+\frac{16-11}{11.16}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)
\(=\frac{15}{16}\)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!1111
\(a)\) \(A=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+...+\frac{3}{49.51}\)
\(A=3\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{49.50}\right)\)
\(2A=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{49.50}\right)\)
\(2A-A=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{49}-\frac{1}{50}\right)\)
\(A=3\left(\frac{1}{3}-\frac{1}{50}\right)\)
\(A=1-\frac{3}{50}\)
\(A=\frac{47}{50}\)
Vậy \(A=\frac{47}{50}\)
\(b)\) \(B=\frac{1}{2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}\)
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}\)
\(B=1-\frac{1}{16}\)
\(B=\frac{15}{16}\)
Vậy \(B=\frac{15}{16}\)
Chúc bạn học tốt ~
c)C=\(\frac{2}{1.2}\)+\(\frac{4}{2.4}\)+\(\frac{6}{4.7}\)+\(\frac{8}{7.11}\)+\(\frac{10}{11.16}\)+\(\frac{12}{16.22}\)
Ta có :
\(C=\frac{2}{1.2}+\frac{4}{2.4}+\frac{6}{4.7}+\frac{8}{7.11}+\frac{10}{11.16}+\frac{12}{16.22}\)
\(C=2\left(\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}+\frac{6}{16.22}\right)\)
\(C=2\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{22}\right)\)
\(C=2\left(1-\frac{1}{22}\right)\)
\(C=2-\frac{1}{11}\)
\(C=\frac{21}{11}\)
Vậy \(C=\frac{21}{11}\)
Chúc bạn học tốt ~
Toán số nha =)
Bài 1:
A:tìm số nguyên n để p/số sau có giá trị là số nguyên:
a)\(\frac{-5}{n-2}\) b)\(\frac{n-5}{n+1}\) c)\(\frac{3n-7}{n+1}\)
B:Chứng minh rằng với mọi số nguyên n thì các p/số sau tối giản
a)\(\frac{2n+1}{2n+2}\) b)\(\frac{2n+5}{2n+3}\)
Bài 2:
a)Tính S=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2011}}\)
b)Tìm x biết :\(x+\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+\frac{4}{7.11}+\frac{5}{11.16}=1\)
Ai nhanh nhất và đúng nhất mình sẽ tick nha
Câu 1:
A)
a) Để \(\frac{-5}{n-2}\)đạt giá trị nguyên thì \(-5⋮n-2\)
Vì \(-5⋮n-2\Rightarrow n-2\inƯ\left(-5\right)=\left(\pm1;\pm5\right)\)
Ta có bảng giá trị:
n-2 | 1 | 5 | -1 | -5 |
n | 3 | 7 | 1 | -3 |
Đối chiếu điều kiện \(n\inℤ\Rightarrow n\in\left(3;7;1;-3\right)\)
Đến câu b,c cậu cũng lí luận để chứng minh tử phải chia hết cho mẫu, còn tớ chỉ cần tách và đưa ra kết quả thôi nhé
b) Ta có: \(n-5⋮n+1\)
\(\Rightarrow\left(n+1\right)-6⋮n+1\)
\(\Rightarrow-6⋮n+1\)
Vì \(-6⋮n+1\Rightarrow n+1\inƯ\left(-6\right)=\left(\pm1;\pm2;\pm3;\pm6\right)\)
Ta có bảng giá trị:
n+1 | 1 | 2 | 3 | 6 | -1 | -2 | -3 | -6 |
2 | 0 | 1 | 2 | 5 | -2 | -3 | -4 | 7 |
Đối chiếu điều kiện \(n\inℤ\Rightarrow\left(0;1;2;5;-2;-3;-4;-7\right)\)
c) Ta có: \(3n+7⋮n-1\)
\(\Rightarrow3\left(n-1\right)+10⋮n-1\)
\(\Rightarrow10⋮n-1\)
Vì \(10⋮n-1\Rightarrow n-1\inƯ\left(10\right)=\left(1;-1;2;-2;5;-5;10;-10\right)\)
Ta có bảng giá trị:
n-1 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
2 | 2 | 0 | 3 | -1 | 6 | -4 | 11 | -9 |
Đối chiếu điều kiện \(n\inℤ\Rightarrow n\in\left(2;0;3;-1;6;-4;11;-9\right)\)
B)
a) Gọi d là ƯC (2n+1;2n+2) \(\left(d\inℤ\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+2⋮d\end{cases}}\) \(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\) \(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow\)2n+1 và 2n+2 nguyên tố cùng nhau
\(\Rightarrow\frac{2n+1}{2n+2}\)là phân số tối giản
b) Gọi d là ƯC(2n+3;2n+5) \(\left(d\inℤ\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\2n+5⋮d\end{cases}}\) \(\Rightarrow\left(2n+5\right)-\left(2n+3\right)⋮d\) \(\Rightarrow2⋮d\) \(\Rightarrow d=\left(1;2\right)\)
Vì 2n+3 và 2n+5 không chia hết cho 2
\(\Rightarrow d=1\)
\(\Rightarrow\)2n+5 và 2n+3 nguyên tố cùng nhau
\(\Rightarrow\frac{2n+3}{2n+5}\)là phân số tối giản
bài 1 tính bằng cách thuận tiện
A = \(\frac{1}{2}\)+ \(\frac{2}{2.4}\)+ \(\frac{3}{4.7}\)+ \(\frac{3}{7.11}\)+ \(\frac{5}{11.16}\)
B = \(\frac{6}{15}\)+ \(\frac{6}{35}\)+ \(\frac{6}{63}\)+ \(\frac{6}{99}\)
20 k bài này nhé giúp mình đi chiều mình phải nộp rồi
Ta có: B = \(\frac{6}{15}+\frac{6}{35}+\frac{6}{63}+\frac{6}{99}\)
=> B = \(\frac{6}{3.5}\)+ \(\frac{6}{5.7}\)+ \(\frac{6}{7.9}\)+ \(\frac{6}{9.11}\)
=>B =\(3.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)
=> B = \(3.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)
=> B = \(3.\left(\frac{1}{3}-\frac{1}{11}\right)\)
=> B = \(3.\frac{8}{33}\)
=> B = \(\frac{8}{11}\)
Vậy: B = \(\frac{8}{11}\)
\(D=\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+...+\frac{10}{46.56}\)
D= 1/1 - 1 /2 + 1/2 - 1/4 + 1/4 - 1/7 +...+ 1/46 - 1/56
D= 1/1 - 1/56
D= 55/56
vậy D= 55/56
Tính \(\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+...+\frac{10}{46.56}\)
Thu gọn :
A = \(\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}+\dfrac{6}{16.22}\)
Đặt \(A=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+\dfrac{4}{7.11}+\dfrac{5}{11.16}+\dfrac{6}{16.22}\)
\(1A=1-\left(\dfrac{1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{7}+\dfrac{1}{7}\right)+\left(\dfrac{1}{11}+\dfrac{1}{11}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}\right)-\dfrac{1}{22}\)\(1A=1-\dfrac{1}{22}\)
\(1A=\dfrac{22}{22}-\dfrac{1}{22}\)
\(1A=\dfrac{21}{22}\)
\(\dfrac{21}{22}\) không thể rút gọn
\(A=\dfrac{1}{1\cdot2}+\dfrac{2}{2\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{5}{11\cdot16}+\dfrac{6}{16\cdot22}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{22}\\ =1-\dfrac{1}{22}\\ =\dfrac{21}{22}\)
Vậy \(A=\dfrac{21}{22}\)
\(P=\frac{1}{1.2}+\frac{2}{2.4}+\frac{3}{4.7}+...+\frac{10}{46.56}\)
giúp mih vs nhoa
P=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{46}-\frac{1}{56}\)
P=\(1-\frac{1}{56}\)
P=\(\frac{55}{56}\)
P = 1 - 1/2 + 1/2 - 1/4 +.......+1/46 - 1/56
P = 1 - 1/56
P = 55/56 nha!
dễ thôi
P= 1/1.2 + 2/2.4 + 3/4.7 + ... + 10/46.56
P= 1- 1/2 + 1/2 - 1/4 + 1/4 -1/7 +... + 1/46 - 1/56
P=1 - 1/56
P=55/56
Tìm x biết: x + 1/1.2 + 1/2.4 + 1/3.7+1/7.11+1/11.16=1
x = \(\frac{163}{528}\)
cho 1 đ-ú-n-g nha bạn