cho n la mot so tu nhien
Chung minh
a, n^5-n chia het 30
b, (n^2+n-1)^2-1 chia het 24
cho n la so tu nhien
Chung minh
a, n^5-n chia het cho 30
b, (n^2+n-1)^2-1 chia het cho 24
\(a,n^5-n=n.\left(n^4-1\right)=n.\left(n^2-1\right).\left(n^2+1\right)\)
\(=n.\left(n^2-1\right).\left(n^2-4+5\right)\)
\(=n.\left(n^2-1\right).\left(n^2-4\right)+5n.\left(n^2-1\right)\)
\(=n.\left(n-1\right).\left(n+1\right).\left(n-2\right).\left(n+2\right)+5n.\left(n-1\right).\left(n+1\right)\)
\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)
Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2;3)=1=>(n-1).n.(n+1) chia hết cho 6
=>5.(n-1).n.(n+1) chia hết cho (5.6)=30 (1)
Vì (n-2).(n-1).n.(n+1).(n+2) là tích của 5 số nguyên liên tiếp nên chia hết cho 5 và 6
Mà (5;6)=1=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 30 (2)
Từ (1);(2)=> (n-2).(n-1).n.(n+1).(n+2)+5(n-1).n.(n+1) chia hết cho 30
=>n5-n chia hết cho 30 (đpcm)
\(b,\left(n^2+n-1\right)^2-1=\left(n^2+n-1-1\right).\left(n^2+n-1+1\right)\)
\(=\left(n^2+n-2\right).\left(n^2+n\right)=\left(n^2+2n-n-2\right).n.\left(n+1\right)\)
\(=\left[n\left(n+2\right)-\left(n+2\right)\right].n.\left(n+1\right)=\left(n+2\right)\left(n-1\right).n.\left(n+1\right)\)
\(=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)
Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp mà trong 4 số nguyên liên tiếp cũng có 3 số nguyên liên tiếp
=>(n-1).n.(n+1).(n+2) chia hết cho 3 (3)
Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp nên chia hết cho 8 (4)
Từ (3);(4);lại có (3;8)=1
=>(n-1).n.(n+1).(n+2) chia hết cho 24
=>(n2+n-1)2-1 chia hết cho 24 (đpcm)
Chung to rang tich n(n+1)(n+5) la mot so chia het cho 3 voi moi so tu nhien n
đặt A=n(n+1)(n+5)
-nếu n chia hết cho 3=>A chia hết cho 3
-nếu có dạng 3k+1(k là STN)
=>n+5=3k+1+5=3(2k+3) chia hết cho 3
=>A chia hết cho 3
-nếu n có dạng 3k+2
=>n+1=3k+3=3(k+1) chia hết cho 3
=>A chia hết cho 3
Do n là số tự nhiên nên n = 3k hoặc n = 3k + 1 hoặc n = 3k + 2 (k thuộc N)
+ Với n = 3k thì n chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3
+ Với n = 3k + 1 thì n + 5 = 3k + 6 = 3.(k + 2) chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3
+ Với n = 3k + 2 thì n + 1 = 3k + 3 = 3.(k + 1) chia hết cho 3 => n.(n + 1).(n + 5) chia hết cho 3
Chứng tỏ tích n.(n + 1).(n + 5) là 1 số chia hết cho 3 với mọi số tự nhiên n
Tim so tu nhien n sao cho
(n+2) chia het cho (n+1)
(2n+7) chia het cho (n+1)
3n chia het cho (5 * 24)
(4n+3) chia het cho (2n-6)
(2n+1) chia het cho (6-n)
Bài 1
n + 2 ⋮ n + 1
n + 1 + 1 ⋮ n + 1
1 ⋮ n + 1
n + 1 \(\in\) Ư(1) = {-1; 1}
n \(\in\) {-2; 0}
Vì n \(\in\) N nên n = 0
Vậy n = 0
Bài 2:
2n + 7 ⋮ n + 1
2(n + 1) + 5 ⋮ n + 1
5 ⋮ n + 1
n + 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
n \(\in\) {-6; -2; 0; 4}
Vì n \(\in\) N nên n \(\in\) {0; 4}
Vậy n \(\in\) {0; 4}
Bài 3
3n ⋮ 5.24
n ⋮ 40
n = 40k (k \(\in\) N)
Vậy n = 40k ; k \(\in\) N
1.chung minh rang:3n.(n+1)chia het cho 6(n thuoc N
2.cmr 5n.(n+1).(n+2) chia het cho 30(n thuocN)
3.tim so tu nhien n de 7.(n-1) chia het cho 4
4.tim so tu nhien n de 5.( n-2) chia het cho 3
1 ) Chung to rang
a) 10100 + 5 chia het cho 3 va cho 5
b) 1050 + 44 chia het cho 2 va cho 9
2) Chung to rang tich n (n+1) (n+5) la mot so chia he cho 3 voi moi so tu nhien n
1)
a)
=10...0+5
=10..05 chia hết cho 5
=1+0+5=6 chia hết cho3
b)10...0+44
=10...04 chia hết cho 2
=1+0+0+4+4=9 chia hết cho 9
n là stn => n= 3k hoặc n=3k + 1 hoặc n= 3k + 2 (k thuộc N)
với n=3k
ta có : 3k ( 3k + 1) (3k +5)
3k chia hết 3 => 3k ( 3k + 1) ( 3k + 5) chia hết cho 3
hay: n(n+1)(n+5) chia hết cho 3
với n=3k+1
ta có : (3k+1)(3k+1+1)(3k+1+5)
=(3k+1)(3k+2)(3k+6)
=3(3k+1)(3k+2)(k+2) chia hết cho 3
hay : n(n+1)(n+5) chia hết cho 3
với n= 3k+ 2
ta có : (3k+2)(3k+2+1)(3k+2+5)
=(3k+2)(3k+3)(3k+7)
=3(3k+2)(k+1)(3k+7) chia hết cho 3
hay : n(n+1)(n+5) chia hết cho 3
Vậy với mọi stn n thì n(n+1)(n+5) chia hết cho 3
tim so tu nhein n biet
n + 4 chia het cho n + 2
n + 7 chia het cho n - 3
2n + 5 chia het cho n - 2
3n + 7 chia het cho n + 1
n - 5 chia het co n
n+4:n+2
n+2+2:n+2
ma n+2:n+2
suy ra 2:n+2
n+2 là ước của 2
ước của 2 là :1,-1,2,-2
n+2=1 suy ra n=1-2 suy ra n=?
các trường hợp khác làm tương tự nhà và cả phần b nữa
3n+7:n+1
(3n+3)+3+7:n+1
3(n+1)+10:n+1
ma 3(n+1):n+1
suy ra 10:n+1 va n+1 thuoc uoc cua 10
den day lam nhu phan tren la duoc
nhớ **** mình nha
n + 4\(⋮\)n+2
=> ( n + 2) + 2 \(⋮\)n + 2 mà n + 2\(⋮\)n+2
=>2 \(⋮\)n+ 2
=> n +2\(\in\)Ư(2)={1;2}
=> n \(\in\){ -1:0} mà n \(\in\)N
=> n\(\in\){0}
Vậy n= 0
Chứng tỏ rằng
a) (2n+1) (2n+2) chia het cho 3 . Voi n la so tu nhien.
b) (5n+1) (5n+2) chia het cho 6 . Voi n la so tu nhien.
Tim so tu nhien x biet :
a) 10 chia het cho n
b) 12 chia het cho n - 1
c) 20 chia het cho 2.n + 1
d) n + 5 chia het cho n + 1
e) n+7 chia het cho n + 2
f) 2.n + 5 chia het cho 2.n + 1
tra loi nhanh dum minh nhe
\(a,10⋮n\Rightarrow n\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5\pm10\right\}.\)
\(\Rightarrow n\in\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(b,12⋮n-1\Rightarrow n-1\inƯ\left(12\right)\left\{\pm1;\pm2;\pm3\pm4;\pm6;\pm12\right\}\)
\(d,n+5⋮n+1\Rightarrow n+1+4⋮n+1.\)
mà \(n+1⋮n+1\Rightarrow4⋮n+1\)
\(\Rightarrow n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
n+1 = 1 => n = 0
n + 1 = -1 => -2
..... tương tự vs 2; -2 ; 4 ; -4
\(e,n+7⋮n+2\Rightarrow n+2+5⋮n+2\)
mà \(n+2⋮n+2\Rightarrow5⋮n+2\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
n+2 = 1 => n = -1
n + 2 = -1 => n = 3
.... tương tự vs 5 và -5
\(f,2n+5⋮2n+1\Rightarrow2n+1+4⋮2n+1\)
\(\Rightarrow2n+1⋮2n+1\Rightarrow4⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
...... tự lm
bai 5:
cho so n = 5+4b (a va b) la so tu nhien tim a+b de
a)n chia het cho 2
b)n chia het cho 5
c)n chia het cho 10