Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trâm Vương
Xem chi tiết
Băng Hoài
Xem chi tiết
Nguyễn Thị Huyền Diệp
Xem chi tiết
An Vy
Xem chi tiết
dinh huong
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 11 2021 lúc 20:36

\(\Leftrightarrow x^2+y^2+2xy+2x+2y+1=x^2y^2+2xy+1-1\)

\(\Leftrightarrow\left(x+y+1\right)^2=\left(xy+1\right)^2-1\)

\(\Leftrightarrow\left(xy+1\right)^2-\left(x+y+1\right)^2=1\)

\(\Leftrightarrow\left(xy+x+y+2\right)\left(xy-x-y\right)=1\)

Phương trình ước số cơ bản

 

Nguyễn Thị Cẩm Ly
Xem chi tiết
Aoi Ogata
28 tháng 1 2018 lúc 21:12

bạn ơi đề khó nhìn vậy  

Nguyễn Thị Cẩm Ly
28 tháng 1 2018 lúc 21:51
bạn giúp mk vs đk k bạn
Bée Changg
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2023 lúc 10:33

a.

\(x^2+4y^2+4xy=0\)

\(\Leftrightarrow\left(x+2y\right)^2=0\)

\(\Leftrightarrow x+2y=0\)

\(\Leftrightarrow x=-2y\)

Vậy pt đã cho có vô số nghiệm dạng \(\left(x;y\right)=\left(-2k;k\right)\) với k là số thực bất kì (nếu đề đúng)

b.

\(2y^4-9y^3+2y^2-9y=0\)

\(\Leftrightarrow2y^2\left(y^2+1\right)-9y\left(y^2+1\right)=0\)

\(\Leftrightarrow\left(2y^2-9y\right)\left(y^2+1\right)=0\)

\(\Leftrightarrow y\left(2y-9\right)\left(y^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\2y-9=0\\y^2+1=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{9}{2}\end{matrix}\right.\)

c. Em kiểm tra lại đề chỗ \(3xy^2\), đề đúng như vậy thì pt này ko giải được

Đỗ Minh Quang
Xem chi tiết
KAl(SO4)2·12H2O
1 tháng 11 2017 lúc 21:33

Ta có x³- y³ - 2y² - 3y - 1= 0 

Hay x³ = y³ + 2y² + 3y + 1 bạn sử dụng pp đánh giá 

Do y² ≥ 0 nên y³ - 3y² + 3y - 1 < y³ + 2y² + 3y + 1 

và y³ + 2y² + 3y + 1 ≤ y³ + 3y² + 3y + 1 

( y - 1 )³ < x³ ≤ ( y + 1 )³ 

Nếu x³ = y³ tìm được nghiệm ( -1; -1 ) 

Nếu x³ = ( y + 1 )³ tìm được nghiệm ( 1; 0 )

Huyền Trang
1 tháng 11 2017 lúc 21:42
Chuyển vế y^3 sang.Dùng nguyên lí kẹp
Quân Butterfly
1 tháng 11 2017 lúc 21:46

x^3=y^3 +2y^2+3y+1

2y^2+3y+1>0

y^2>=0

suy ra (y^3+2y^2+3y+1)-(2y^2+3y+1)<y^3+2y^2+3y+1<=y^3+2y^2+3y+1+y^2

suy ra y^3<x^3<=y^3+3y^2+3y+1=(y+1)^3

vì x,y là số nguyên

suy ra x^3=(y+1)^3

suy ra x=y+1

thay vào đề ra ta có (y+1)^3=y^3+2y^2+3y+1

suy ra y^2=0

suy ra y=0;x=y-1=0-1=-1

Hoàng Mai Phương
Xem chi tiết
Đoàn Đức Hà
26 tháng 8 2021 lúc 17:43

\(x^2-2y^2-xy+2x-y-2=0\)

\(\Leftrightarrow x^2+xy+x-2xy-2y^2-2y+x+y+1=3\)

\(\Leftrightarrow\left(x+y+1\right)\left(x-2y+1\right)=3\)

Mà \(x,y\)nguyên nên \(x+y+1,x-2y+1\)là các ước của \(3\).

Ta có bảng giá trị: 

x+y+1-3-113
x-2y+1-1-331
x-10/3 (l)-8/3 (l)2/3 (l)4/3 (l)
y    

Vậy phương trình đã cho không có nghiệm nguyên. 

Khách vãng lai đã xóa