Phân tích đa thức thành nhân tử:
( x + 2 ) ( x + 4 ) ( x + 6 ) ( x + 8 ) + 16
phân tích đa thức thành nhân tử
(x+2)(x+4)(x+6)(x+8)-16
(x+2)*(x+4)*(x+6)*(x+8)+16 phân tích đa thức thành nhân tử help e vs
(x+2)(x+4)(x+6)(x+8)+16
=(x+2)(x+8)(x+4)(x+6)+16
=(x2+10x+16)(x2+10x+24)+16
đặt t=x2+10x+16 ta được:
t.(t+8)+16
=t2+8t+16
=(t+4)2
thay t=x2+10x+16 ta được:
(x2+10x+16)2
=[(x+2)(x+8)]2
=(x+2)2(x+8)2
vậy (x+2)(x+4)(x+6)(x+8)+16 =(x+2)2(x+8)2
(x+2)(x+4)(x+6)(x+8)+16
=(x+2)(x+8)(x+4)(x+6)+16
=(x2+10x+16)(x2+10x+24)+16
đặt t=x2+10x+16 ta được:
t.(t+8)+16
=t2+8t+16
=(t+4)2
thay t=x2+10x+16 ta được:
(x2+10x+16)2
=[(x+2)(x+8)]2
=(x+2)2(x+8)2
vậy (x+2)(x+4)(x+6)(x+8)+16 =(x+2)2(x+8)2
mình nghĩ bạn Triều Đăng làm sai rồi...
đoạn đầu đến chôc thay t là ok r nhưng sau đó bạn sai
đáng lí sau khi thay thì ta đc
(x^2 +10x + 20)^2 ms đúng
Phân tích đa thức thành nhân tử:
( x + 2 ) ( x + 4 ) ( x + 6 ) ( x + 8 ) + 16
Ta có: (x+2)(x+4)(x+6)(x+8)+16
=[(x+2)(x+8)]+[(x+4)(x+6)]+16
\(=\left[x^2+10x+16\right]\left[x^2+10x+24\right]+16\) (1)
Đặt \(x^2+10x+16=t\), khi đó (1) trở thành:
\(t\left(t+8\right)+16=t^2+8t+16=\left(t+4\right)^2\)
Thay \(x^2+10x+16=t\), ta có: \(\left(x^2+10x+16+4\right)^2=\left(x^2+10x+20\right)^2\)
Có gì đó sai sai á nhờ :vv?
( x + 2 )( x + 4 )( x + 6 )( x + 8 ) + 16
= [ ( x + 2 )( x + 8 ) ][ ( x + 4 )( x + 6 ) ] + 16
= ( x2 + 10x + 16 )( x2 + 10x + 24 ) + 16 (*)
Đặt t = x2 + 10x + 20
(*) <=> ( t - 4 )( t + 4 ) + 16
= t2 - 16 + 16
= t2 = ( x2 + 10x + 20 )2
Đặt \(A=\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(\Rightarrow A=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
Đặt \(x^2+10x+20=t\)
\(\Rightarrow A=\left(t-4\right)\left(t+4\right)+16=t^2-16+16=t^2\)
\(=\left(x^2+10x+20\right)^2\)
Phân tích đa thức thành nhân tử : 4( x +5 ) (x + 6) (x+10 ) (x + 16) - 3x^2
Đề Phân tích đa thức thành nhân tử 1/(1 - x )+ 1/(1+x)+2/(1+x^2)+ 4/(1+x^4)+8/(1+x^8) - 16/(1+ x^16)
Phân tích đa thức thành nhân tử x^16+x^8-2
x 16 + x 8 − 2 = ( x 8 ) 2 + x 8 − 2 = ( x 8 − 1 ) ( x 8 + 2 ) = ( x 4 − 1 ) ( x 4 + 1 ) ( x 8 + 2 ) = ( x 2 − 1 ) ( x 2 + 1 ) ( x 4 + 1 ) ( x 8 + 2 ) = ( x − 1 ) ( x + 1 ) ( x 2 + 1 ) ( x 4 + 1 ) ( x 8 + 2 )
Phân tích đa thức thành nhân tử:
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10+16+8\right)+16\)
\(=\left(x^2+10x+16\right)^2+2.\left(x^2+10x+16\right).4+4^2\)
\(=\left(x^2+10x+16+4\right)^2\)
\(=\left(x^2+10+20\right)^2\)
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]+16\)
\(=\left(x^2+8x+2x+16\right)
\left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\left(1\right)\)
\(\text{Đặt }x^2+10x+\frac{16+24}{2}=t\)
\(\text{hay }x^2+10x+20=t\)
\(\left(1\right)\Rightarrow\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-4^2+16\)
\(=t^2-16+16\)
\(=t^2\)
\(=\left(x^2+10x+20\right)^2\)
phân tích đa thức thành nhân tử:
\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\)
\(\left(x-2\right)\left(x-4\right)\left(x-6\right)\left(x-8\right)+16\)
\(=\left[\left(x-2\right)\left(x-8\right)\right]\left[\left(x-4\right)\left(x-6\right)\right]+16\)
\(=\left(x^2-10x+16\right)\left(x^2-10x+24\right)+16\)(1)
Đặt \(x^2-10x+20=t\)thay vào (1) ta được :
\(\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-16+16\)
\(=t^2\)Thay \(t=x^2-10x+20\)ta được :
\(\left(x^2-10x+20\right)^2\)
\(=\left(x^2-2.5.x+25-25+20\right)^2\)
\(=\left[\left(x-5\right)^2-5\right]^2\)
\(=\left(x-5-\sqrt{5}\right)^2\left(x-5+\sqrt{5}\right)^2\)
Phân tích đa thức thành nhân tử.
1)x^4+2x^3-4x-4
2)(x+2)(x+4)(x+6)(x+8)+16
3)(x^2+x).(x^2+x+1)-6
4)(x^2+4x+8)^2+3x(x^2+4x+8)
ta có
\(5x=-3y=4z\)
\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{3z}{45}=\frac{x-y+3z}{12+20+45}=\frac{7}{77}=\frac{1}{11}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{11}.12=\frac{12}{11}\\-y=\frac{1}{11}.20=\frac{20}{11}\\3z=\frac{1}{11}.45=\frac{45}{11}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{12}{11}\\y=-\frac{20}{11}\\z=\frac{45}{11}:3=\frac{15}{11}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=\frac{12}{11}\\y=\frac{-20}{11}\\z=\frac{15}{11}\end{cases}}\)