Chứng tỏ rằng hai số chia cho 9 có cùng số dư thì hiệu hai số đó chia hết cho 9
Chứng tỏ rằng nếu hai số có cùng số dư khi chia cho 7 thì hiệu của chúng chia hết cho 7
Gọi a và b là hai số có cùng số dư r khi chia cho 7 (giả sử a ≥ b)
Ta có a = 7m + r, b = 7n + r (m, n ∈ N)
Khi đó a - b = (7m + r) - (7n + r) = 7m - 7n = 7.(m – n)
Ta có: 7 ⋮ 7 nên 7(m - n) ⋮ 7 hay a - b ⋮ 7
Tìm số tự nhiên N, biết rằng số đó chia hết cho 6, chia cho 9 thì dư 3; hiệu của hai thương bằng 2. Trả lời : N = ...
cho 4 STN bất kì chứng tỏ rằng trong đó có ít nhất 2 số có hiệu chia hết cho 3
Cho STN không chia hết cho 6. Hãy chứng tỏ rắng trong đó có ít nhất 3 số chia hết cho 6 cố cùng số dư.
2 số không chia ết cho 3 , khi chia cho 3 thì được những số dư khác nhau . Chứng tỏ rằng tổng của 2 số đó chia hết cho 3 .
Theo đề bài , ta có :
a = 3q + 1 ( q \(\in\) N )
b = 3q + 2 ( p \(\in\) N )
Do đó : a + b = ( 3q + 1 ) + ( 3p + 2 )
= 3q + 3p + 3
= 3( q + p + 1 ) \(\vdots\) 3 vì 3 \(\vdots\) 3
Vậy tổng a + b \(\vdots\) 3
a,Chứng tỏ rằng hai số 9n+7 và 4n+3 là hai số nguyên tố cùng nhau.
b, Chứng minh rằng với mọi số tự nhiên n thì n2+n+2016 không chia hết cho 5.
Cho STN không chia hết cho 6. Hãy chứng tỏ rắng trong đó có ít nhất 3 số chia hết cho 6 cố cùng số dư. ( Trình bày bài giải nhé )
Tìm 1 số có 3 chữ số có tận cùng bằng 5. Nếu số đó cộng thêm 7 thì được 1 số chia hết cho 7. Thương tìm được cộng 8 thì chia hết cho 8. Thương tìm được cộng 9 thì chia hết cho 9.
goi thương cuối cung là x , số cần tìm là ab5
thương tìm dc cộng 9 thì chia hết cho 9 nên thương dó có dạng 9x-9
thương tìm dược cộng 8 thì chia hết cho 8 nên thương có dang \(\left(9x-9\right).8-8\)
số dó cong thêm 7 thì dc 1 số chia hết cho 7 nên \(\left[\left(9x-9\right).8-8\right].7-7=\)ab5
suy ra 504x-567=ab5 dk x<=3)
nen 504x có chữ só tận cùng =2 suy ra x= 3
nên số cần tìm 945
nguồn bạn cùng lớp