Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Phúc
Xem chi tiết
Hoàng Lê Bảo Ngọc
15 tháng 10 2016 lúc 20:41

Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014

Văn Đức Kiên
15 tháng 10 2016 lúc 20:40

ki+e

n ejmfjnhcy

vtzking tony
Xem chi tiết
mokona
17 tháng 1 2016 lúc 10:24

Em mới lớp 6 thui! Sorry vì ko giúp đc

vtzking tony
17 tháng 1 2016 lúc 10:34

ai biet jup tui voi

 

Huỳnh Phát Đạt
17 tháng 1 2016 lúc 10:55

lục sách tìm !có đấy ! tuy em có mới học lớp 5 nhưng thấy qua bai này rùi !!!!!

Trần Thu Hương
Xem chi tiết
hoanghongnhung
Xem chi tiết
Nguyễn Thị Hằng Nga
Xem chi tiết
Pham hong duc
Xem chi tiết
☆☆《Thiên Phi 》☆☆
6 tháng 4 2019 lúc 23:27

Bạn hỏi hay trả lời luôn dzậy?

Arceus Official
Xem chi tiết
alibaba nguyễn
25 tháng 8 2017 lúc 8:43

Ta cần chứng minh:

\(\frac{2014}{\sqrt{2013}}+\frac{2013}{\sqrt{2014}}>\sqrt{2013}+\sqrt{2014}\)

\(\Leftrightarrow\frac{\sqrt{2013^3}+\sqrt{2014^3}}{\sqrt{2013}.\sqrt{2014}}>\sqrt{2013}+\sqrt{2014}\)

\(\Leftrightarrow\frac{\left(\sqrt{2013}+\sqrt{2014}\right)\left(2013-\sqrt{2013}.\sqrt{2014}+2014\right)}{\sqrt{2013}.\sqrt{2014}}>\sqrt{2013}+\sqrt{2014}\)

\(\Leftrightarrow\frac{2013-\sqrt{2013}.\sqrt{2014}+2014}{\sqrt{2013}.\sqrt{2014}}>1\)

\(\Leftrightarrow2013-2\sqrt{2013}.\sqrt{2014}+2014>0\)

\(\Leftrightarrow\left(\sqrt{2013}-\sqrt{2014}\right)^2>0\)đúng

Nguyễn Tuấn
Xem chi tiết
Phạm Lê Nam Bình
Xem chi tiết
Chu Công Đức
9 tháng 12 2019 lúc 21:37

Ta có: \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

Tương tự : \(\frac{1}{3^2}< \frac{1}{2.3}\)\(\frac{1}{4^2}< \frac{1}{3.4}\); ......... ; \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{2013.2014}\)               

        \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{2013}-\frac{1}{2014}\)

        \(=1-\frac{1}{2014}=\frac{2013}{2014}\)

\(\Rightarrow S< \frac{2013}{2014}\left(đpcm\right)\)

Khách vãng lai đã xóa