Chứng minh số sau đây là số nguyên :
\(\sqrt{1^2+2013^2+\frac{2013^2}{2014^2}}\) +\(\frac{2013}{2014}\)
Tính gía trị biểu thức:
\(A=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{2014\sqrt{2013}+2013\sqrt{2014}}+\frac{1}{2015\sqrt{2014}+2014\sqrt{2015}}\)
Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014
giúp tui voi \(\sqrt{1+2013^2+\frac{2013^2}{2014^2}}+\frac{2013}{2014}\)
lục sách tìm !có đấy ! tuy em có mới học lớp 5 nhưng thấy qua bai này rùi !!!!!
Chứng minh: \(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+..+\frac{n}{2^n}+...+\frac{2013}{2^{2013}}+\frac{2014}{2^{2014}}<2\)
Tính giá trị của P = \(\sqrt{1+2013^2+\frac{2013^2}{2014^2}}\)+\(\frac{2013}{2014}\)
Chứng minh:\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{2013\sqrt{2014}}\) <2
\(\frac{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2013}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2013}}{\frac{2012}{1}+2+\frac{2012}{2}+1+\frac{2011}{3}+1+...+\frac{1}{2013}+1-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{\frac{2014}{1}+\frac{2014}{2}+...+\frac{2014}{2013}-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{2014\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-1\right)}\)
=\(\frac{1}{2014}\)
Chứng mnh rằng \(\frac{2014}{\sqrt{2013}}+\frac{2013}{\sqrt{2014}}>\sqrt{2013}+\sqrt{2014}\)
Ta cần chứng minh:
\(\frac{2014}{\sqrt{2013}}+\frac{2013}{\sqrt{2014}}>\sqrt{2013}+\sqrt{2014}\)
\(\Leftrightarrow\frac{\sqrt{2013^3}+\sqrt{2014^3}}{\sqrt{2013}.\sqrt{2014}}>\sqrt{2013}+\sqrt{2014}\)
\(\Leftrightarrow\frac{\left(\sqrt{2013}+\sqrt{2014}\right)\left(2013-\sqrt{2013}.\sqrt{2014}+2014\right)}{\sqrt{2013}.\sqrt{2014}}>\sqrt{2013}+\sqrt{2014}\)
\(\Leftrightarrow\frac{2013-\sqrt{2013}.\sqrt{2014}+2014}{\sqrt{2013}.\sqrt{2014}}>1\)
\(\Leftrightarrow2013-2\sqrt{2013}.\sqrt{2014}+2014>0\)
\(\Leftrightarrow\left(\sqrt{2013}-\sqrt{2014}\right)^2>0\)đúng
Giải pt
\(\sqrt{2x+\frac{2013-1}{\sqrt{2-x^2}}}-\sqrt[3]{2014-\frac{2013-1}{\sqrt{2-x^2}}}=\sqrt{x+2013}-\sqrt[3]{x+1}\)
Chứng minh:\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+........+\frac{1}{2014^2}< \frac{2013}{2014}\)
Ta có: \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
Tương tự : \(\frac{1}{3^2}< \frac{1}{2.3}\); \(\frac{1}{4^2}< \frac{1}{3.4}\); ......... ; \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{2013.2014}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{2013}-\frac{1}{2014}\)
\(=1-\frac{1}{2014}=\frac{2013}{2014}\)
\(\Rightarrow S< \frac{2013}{2014}\left(đpcm\right)\)