Cho A=1010+1/1010-1 và B=1010-1/1010-3. So sánh A và B
cho A=1+\(\frac{1}{3}\)+\(\frac{1}{5}\)+.....+\(\frac{1}{2017}\)
B=\(\frac{1010}{1.2017}+\frac{1010}{2.2016}+...+\frac{1010}{2017.1}\)
so sánh A và B
giúp mik với, mik tick cho, đang cần gấp
Cho A= 1011-1/1012-1 và 1010+1/1011+1. So sánh A và B
Giải:
Ta có: A=1011-1/1012-1
10A=10.(1011-1)/1012-1
10A=1012-10/1012-1
10A=1012-1-9/1012-1
10A=1012-1/1012-1 - 9/1012-1
10A=1-9/1012-1
Tương tự: B=1010+1/1011+1
10B=1+9/1011+1
Vì -9/1012-1 < 9/1011+1 nên 10A < 10B
Vậy A<B
Chúc bạn học tốt!
So sánh: A = 10 10 + 1 10 11 + 1 v à B 10 9 + 1 10 10 + 1
Sử dụng tính chất nếu a b < 1 thì a b < a + m b + m với mọi a, b, m ∈ Z
A = 10 10 + 1 10 11 + 1 < 10 10 + 10 10 11 + 10 = 10 9 + 1 10 10 + 1 = B
Vậy A < B
Cách khác: 10A= 10 11 + 10 10 11 + 1 = 1 + 9 10 11 + 1
10 B = 10 10 + 10 10 10 + 1 = 1 + 9 10 11 + 1 mà 9 10 11 + 1 < 9 10 10 + 1 => A < B
So sánh A = 10 10 + 1 10 11 + 1 và B = 10 9 + 1 10 10 + 1
So sánh: A = 10 10 + 1 10 11 + 1 và B = 10 9 + 1 10 10 + 1
so sánh : A=1011-1/1012-1 và B=1010+1/1011+1
Giải:
A=10^11-1/10^12-1
10A=10.(10^11-1)/10^12-1
10A=10^12-10/10^12-1
10A=10^12-1-9/10^12-1
10A=10^12-1/10^12-1 + -9/10^12-1
10A=1+ -9/10^12-1
B=10^10+1/10^11+1
10B=10.(10^10+1)/10^11+1
10B=10^11+10/10^11+1
10B=10^11+1+9/10^11+1
10B=10^11+1/10^11+1 + 9/10^11+1
10B=1 + 9/10^11+1
Vì -9/10^12-1 < 9/10^11+1 nên 10A < 10B
=>A < B
Chúc bạn học tốt!
cho ba số a, b, c thỏa mãn abc = 27 và 1/a+1/b+1/c = (a+b+c)/9 Chứng minh (a*2020-9*1010)(b*2020-9*1010)(c*2020-9*1010)=0
Cho x^2+y^2=1 và b.x^2=a.y^2.Chứng minh rằng x^2020/a^1010+y^2020/b^1010=2/(a+b)^1010
\(bx^2=ay^2\Leftrightarrow\dfrac{x^2}{a}=\dfrac{y^2}{b}\Leftrightarrow\left(\dfrac{x^2}{a}\right)^{1010}=\left(\dfrac{y^2}{b}\right)^{1010}\\ \Leftrightarrow\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{a^{1010}}\)
Áp dụng t/c dtsbn:
\(\dfrac{x^{2020}}{a^{1010}}=\dfrac{y^{2020}}{b^{1010}}=\dfrac{x^{2020}+y^{2020}}{a^{1010}+b^{1010}}\left(3\right)\)
Đặt \(\dfrac{x^2}{a}=\dfrac{y^2}{b}=k\Leftrightarrow x^2=ak;y^2=bk\)
\(x^2+y^2=1\Leftrightarrow ak+bk=1\Leftrightarrow k\left(a+b\right)=1\Leftrightarrow a+b=\dfrac{1}{k}\)
\(\Leftrightarrow\dfrac{2}{\left(a+b\right)^{1010}}=\dfrac{2}{\left(\dfrac{1}{k}\right)^{1010}}=2:\dfrac{1}{k^{1010}}=k^{1010}\left(1\right)\)
Mà \(\dfrac{x^{2020}}{a^{1010}}=\dfrac{\left(x^2\right)^{1010}}{a^{1010}}=\dfrac{a^{1010}k^{1010}}{a^{1010}}=k^{1010}\left(2\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\) ta được đpcm
Cho x^2+y^2=1 và bx^2=ay^2.Chứng minh rằng x^2020/a^1010+y^2020/b^1010=2/(a+b)^1010
Cho biết A=\(\frac{1010^{1010}}{2010^{2010}}\)và B=\(\frac{2010^{2010}}{3010^{3010}}\).Hãy so sánh A và B