Tính nhanh:
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = ?
Ai nhanh nhất sẽ đc mk tk cho (tính nhanh)
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
= 1 x 10
= 10
Ủng hộ nha!!!
tính nhanh: 1/2 +1/14 +1/35 +1/65 +1/104 +1/152 +1/209 cách cậu viết cách tính và tính nhanh lên hộ mình nhé
các cậu có thể viết cách tính nhanh được không?
Tính nhanh: 1/1+2 + 1/1+2+3 + 1/1+2+3+4+.....+1/1+2+3+.....+2020
Nhanh nho !!
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + \(\dfrac{1}{1+2+3+4}\)+...+ \(\dfrac{1}{1+2+3+...+2020}\)
Ta có S = 1 + 2 + ...+ n
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (n-1): 1 + 1 = n
Áp dụng công thức tính tổng của dãy số cách đều ta có tổng trên là:
S = (n+1)\(\times\) n : 2
Áp dụng công thức tính tổng S trên vào biểu thức A ta có:
A = \(\dfrac{1}{\left(2+1\right)\times2:2}\)+\(\dfrac{1}{\left(3+1\right)\times3:2}\)+...+\(\dfrac{1}{\left(2020+1\right)\times2020:2}\)
A = \(\dfrac{1}{2\times3:2}\) + \(\dfrac{1}{3\times4:2}\)+ \(\dfrac{1}{4\times5:2}\)+...+\(\dfrac{1}{2020\times2021:2}\)
A = \(\dfrac{2}{2\times3}\) + \(\dfrac{2}{3\times4}\) + \(\dfrac{2}{4\times5}\)+...+ \(\dfrac{2}{2020\times2021}\)
A = \(2\) \(\times\)( \(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\)+ \(\dfrac{1}{4\times5}\)+...+ \(\dfrac{1}{2020\times2021}\))
A = 2 \(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+\(\dfrac{1}{4}\) - \(\dfrac{1}{5}\)+...+ \(\dfrac{1}{2020}\)- \(\dfrac{1}{2021}\))
A = 2\(\times\)( \(\dfrac{1}{2}\) - \(\dfrac{1}{2021}\))
A = 1 - \(\dfrac{2}{2021}\)
A = \(\dfrac{2021-2}{2021}\)
A = \(\dfrac{2019}{2021}\)
Bài 1: Tính nhanh
a) 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/128 + 1/256
b) 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
c)1/2 + 1/6 + 1/12 + 1/20 + 1/30
tính bằng 2 cách
nhanh nhé
bài 1 tính nhanh
mik xin sửa đề câu a thành thế này ~
\(a,\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
đặt \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(A\cdot2=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(A\cdot2-A=\) ( \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\) ) - ( \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\) )
\(A=1-\frac{1}{256}\)
\(A=\frac{255}{256}\)
\(b,\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
đặt \(B=\) \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(B\cdot3=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(B\cdot3-B=\) ( \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)) - \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\) )
\(B\cdot2=\) \(1-\frac{1}{729}\)
\(B\cdot2=\frac{728}{729}\)
\(B=\frac{728}{729}:2\)
\(B=\frac{364}{729}\)
\(c,\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
ĐẶT \(C=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}\)
\(C=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}\)
\(C=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(C=\frac{1}{1}-\frac{1}{6}\)
\(C=\frac{5}{6}\)
Tính nhanh:
a) (1/2-1)(1/3-1)(1/4-1)..............(1/1999-1)
b)-1 1/2 * (-1 1/3) * (-1 1/4)............. (-1 1/1999)
nhanh lên nha các bn
1+1+1+1+1+1+1+1+1+1
tính nhanh nhất
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 1 x 10 = 100
tchs mình tchs lại
Tổng trên là :
\(1+1+1+1+1+1+1+1+1+1=1.10=10\)
Đáp số : 10
số đó là
1x10
=10
ai muốn thì k tui đã
Tính nhanh: (1+1/2) + (1+1/6) + (1+1/12) + .....+(1+1/9900) + (1+1/10100)
A = 1+ 1+1+ ...+ 1 +(\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}+\dfrac{1}{10100}\))
=(1+1+1+...+1)+ (\(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{99x100}+\dfrac{1}{100x101}\))
=100 +\(1-\dfrac{1}{101}=100-\dfrac{100}{101}=\dfrac{10000}{101}\)
1+1/2+1+1/6+1+1/12+...+1+1/9900
=1+1/1*2+1+1/2.3+....+1+1/99*100
=100*1+1-1/2+1/2-1/3+1/3-1/4...+1/99-1/100
=100+99/100
=10099/100
Tính nhanh:
(1-1/2) : (1-1/3) : (1-1/4) : (1-1/5) =?