Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tiên Lê
Xem chi tiết
Tống Thị Việt
Xem chi tiết
Park Jimin
Xem chi tiết
Hà Chí Dương
30 tháng 4 2017 lúc 19:40

dốt thế 

Park Jimin
30 tháng 4 2017 lúc 19:46

Mình ngu lắm dân trần đăng ninh chuyên anh mà làm sao giỏi toán được

Thanh Tùng DZ
30 tháng 4 2017 lúc 20:08

gọi A là tên biểu thức trên

Ta có :

\(A=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(3A=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(\Rightarrow A+3A=\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)+\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)\)( 2 )

\(\Rightarrow4A.3=12A=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)( 1 )

Cộng ( 1 ) và ( 2 ) ta được :

\(16A=3-\frac{101}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow A=\frac{3-\frac{101}{3^{99}}-\frac{100}{3^{100}}}{16}\)

\(\Rightarrow A=\frac{3}{16}-\frac{\frac{101}{3^{99}}-\frac{100}{3^{100}}}{16}< \frac{3}{16}\)

Thái Thùy Trâm
Xem chi tiết
Đào Trọng Luân
12 tháng 5 2017 lúc 20:41

\(Cm:\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)

Gọi biểu thức trên là A, ta có:

3A = 1-2/3+3/3^2-...-100/3^99

3A + A = [1-2/3+3/3^2-...-100/3^99] + [1/3-2/3^2+3/3^3-...-100/3^100]

4A = 1 - 1/3 + 1/3^2 - ... - 1/3^99 - 100/3^99 [1]

Gọi B = 1-1/3 + 1/3^2 - ... - 1/3^99

3B = 3 - 1 + 1/3 - 1/3^2 -...-1/3^2012

3B + B = [3-1+1/3-1/3^2-...-1/3^2012] + [1-1/3 + 1/3^2 - ... - 1/3^99]

4B = 3 - 1/3^99 

=> 4B < 3 => B < 1/4 [2]

Từ [1], [2] => 4A < B < 3/4 => A < 3/16 [đpcm]

MỎI TAY QUỚ

tk nha

thánh yasuo lmht
12 tháng 5 2017 lúc 20:33

Lúc đặt câu hỏi, bạn bấm vào góc trên cùng bên trái để gõ phép tính đẹp. Ý của bạn có phải là:

\(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)

Thắng  Hoàng
16 tháng 11 2017 lúc 15:40

Bạn kia làm dúng rồi^_^

Thắng Quang
Xem chi tiết
Nguyễn acc 2
9 tháng 2 2022 lúc 20:07

gọi biểu thức trên là A , ta có :

\(A=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+\dfrac{5}{3^5}-...+\dfrac{99}{3^{99}}+\dfrac{100}{3^{100}}\\ 3A=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\\ \Rightarrow A+3A=\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\right)+\left(1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\right)\\ \Rightarrow4A\cdot3=12A=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}-\dfrac{1}{3^{99}}\)

từ đó ta được :

\(16A=3-\dfrac{100}{3^{99}}-\dfrac{100}{3^{100}}\\ \Rightarrow A=\dfrac{\dfrac{3-101}{3^{99}}-\dfrac{100}{3^{100}}}{16}\\ \Rightarrow A=\dfrac{3}{16}-\dfrac{\dfrac{101}{3^{99}}-\dfrac{100}{3^{100}}}{16}< \dfrac{3}{16}\)

 

Thắng Quang
9 tháng 2 2022 lúc 19:53

help mik với 

Nguyen Lan Huong
Xem chi tiết
renny phạm
Xem chi tiết
Trịnh Thành Long
Xem chi tiết
dang van nam
Xem chi tiết
Nguyễn Anh Quân
6 tháng 1 2018 lúc 19:56

A = (3+3^2+3^3+3^4)+(3^5+3^6+3^7+3^8)+.....+(3^97+3^98+3^99+3^100)

   = 120+3^4.(3+3^2+3^3+3^4)+.....+3^96.(3+3^2+3^3+3^4)

   = 120+3^4.110+....+3^96.120

   = 120.(1+3^4+.....+3^96) chia hết cho 120

=> ĐPCM

Tk mk nha

huynh van duong
6 tháng 1 2018 lúc 19:57

ta co A=(31+32+33+34)+...+(397+398+399+3100)

tớ gợi ý nhiêu đây thôi