cho tam giac ABC có góc B>góc c vẽ phân giác AD. CMR: góc ADC- góc ADB=góc B- góc C
Cho tam giác ABC có góc B > góc C. Vẽ phân giác AD của góc A ( D thuộc BC)
Cm: Góc ADC - góc ADB = Góc B - góc C.
Cho tam giác ABC có AC > AB. Vẽ tia phân giác AD ( C thuộc BC ). Chứng minh: góc ADC - góc ADB = góc B - góc C
cho tam giac ABC phân giác AD ( D thuộc BC).biết 2B-C =20 (B>C).Tính góc ADC , góc ADB
Cho tam giác ABC có góc B trừ góc C bằng 20 độ vẽ ad là tia phân giác của góc A biết D thuộc BC Tính góc ADB và góc ADC
Cho tam giác ABC có góc B lớn hơn góc C
Vẽ tia phân giác AD
a) Chứng minh: góc ADC - góc ADB = góc B - góc C
b) Đường thẳng chứa tia phân giác góc ngoài của đỉnh A của tam giác ABC cắt BC tại E
Chứng minh: AEB =( góc B - góc C) / 2
Cho tam giác ABC có góc B = góc C và AD là tia phân giác (D thuộc BC). Chứng minh :
a) góc ADB = góc C + góc CAD.
b) Góc ADB = góc ADC.
c) AD vuông góc với BC.
a: \(\widehat{ADB}=\widehat{C}+\widehat{CAD}\)(tính chất góc ngoài)
b: Xét ΔABD và ΔACD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔABD=ΔACD
Suy ra: \(\widehat{ADB}=\widehat{ADC}\)
c: Ta có: ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
Cho tam giác ABC có AC> AB, góc B > góc C
a) Vẽ phân giác AD (D thuộc BC). Chứng minh góc ADC > góc ADB
a: \(\widehat{BAD}+\widehat{B}+\widehat{ADB}=\widehat{CAD}+\widehat{C}+\widehat{ADC}\left(=180^0\right)\)
\(\Leftrightarrow\widehat{B}+\widehat{ADB}=\widehat{C}+\widehat{ADC}\)
mà \(\widehat{B}>\widehat{C}\)
nên \(\widehat{ADB}< \widehat{ADC}\)
a, Ta có ^ADC = 1800 - ^C - ^DAC
^ADB = 1800 - ^B - ^BAD
mà ^DAC = ^BAD ( AD là pg )
^B > ^C (gt)
=> ^ADC > ^ADB
Cho tam giác ABC có AD là đường phân giác. Chứng minh rằng góc ADC - góc ADB = góc B - góc C
1) cho tam giác ABC có góc A / 3 = goc B / 4 = góc C/5. Tính góc A,B,C
2) cho ABC có 2 . góc A = 3 . góc B = 4 . góc C. Tính góc A,B,C
3) cho ABC có góc A + góc B= góc C, góc B = 2 lần góc A. Vẽ BD là phân giác của góc ABC, D thuộc AC. Tính góc BDC, góc BDA.
4) Cho ABC có góc A = 90*, vẽ BE là phân giác của góc ABC, E thuộc AC. chứng minh : a) góc BEC là góc tù b) Tính góc C biết góc BEC = 110*
5) cho tam giác ABC có góc B - góc C = 40*, phân giác AD của góc BAC , D thuộc BC. Tính a) góc ADC, góc ADB? b) Vẽ đường cao AH, tính góc HAD
6) cho tam giác ABC có góc B - góc C = 40*, phân giác AD của góc BAC , D thuộc BC. Tính a) góc ADC, góc ADB? b) Vẽ đường cao AH, tính góc HAD
mỗi bạn giải giúp mik 1 câu nhé. đa tạ - sẽ tick nhaaaa. mình sắp kiểm tra bài này rồi pleaseee
#)Giải :
Bài 1 :
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{\widehat{A}}{3}=\frac{\widehat{B}}{4}=\frac{\widehat{C}}{5}=\frac{\widehat{A}+\widehat{B}+\widehat{C}}{3+4+5}=\frac{180^o}{12}=15\)
\(\hept{\begin{cases}\frac{\widehat{A}}{3}=15\\\frac{\widehat{B}}{4}=15\\\frac{\widehat{C}}{5}=15\end{cases}\Rightarrow\hept{\begin{cases}\widehat{A}=45^o\\\widehat{B}=60^o\\\widehat{C}=75^o\end{cases}}}\)
Vậy \(\widehat{A}=45^o;\widehat{B}=60^o;\widehat{C}=75^o\)
Bài 2 :
Áp dụng tính chất tỉ lệ thức :
\(2\widehat{A}=3\widehat{B}\Rightarrow\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3};3\widehat{B}=4\widehat{C}\Rightarrow\frac{\widehat{B}}{3}=\widehat{\frac{C}{4}}\)
\(\Rightarrow\frac{\widehat{A}}{2}=\frac{\widehat{B}}{3}=\frac{\widehat{C}}{4}\)
Tiếp tục áp dụng tính chất dãy tỉ số bằng nhau rồi làm thôi, ez nhỉ ^^