Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ranpo
Xem chi tiết
Vũ Việt Hoàng
Xem chi tiết
Mr Lazy
27 tháng 6 2015 lúc 21:28

\(VP=3-\left(y^2-2y+1\right)=3-\left(y-1\right)^2\le3\)(Dấu "=" xảy ra khi \(y=1\)

Nhìn đề bài ta đoán dạng bất đẳng thức, có \(VP\le3\), giờ ta chứng minh \(VT\ge3\)

Thật vậy, ta có

 \(\frac{4x^2-4x+7}{x^2+1}-3=\frac{4x^2-4x+7-3\left(x^2+1\right)}{x^2+1}=\frac{x^2-4x+4}{x^2+1}\)

\(=\frac{\left(x-2\right)^2}{x^2+1}\ge0\)

Do đó; \(\frac{4x^2-4x+7}{x^2+1}\ge3\)(dấu "=" xảy ra khi \(x=2\))

\(\Rightarrow\frac{4x^2-4x+7}{x^2+1}\ge3\ge2+2y-y^2\)

\(VT=VP\Leftrightarrow VT=3;VP=3\)

\(\Leftrightarrow x=3;y=1\)

 

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 2 2019 lúc 8:24

Đáp án A

Ta có, giả thiết

là miền trong đường tròn tâm I(1;1) bán kính R1 = 2

Và 

Âu Dương Vũ
Xem chi tiết
Nguyễn Châu Mỹ Linh
Xem chi tiết
trương khoa
16 tháng 5 2021 lúc 21:44

a) \(\sqrt{4x^2-4x+9}=3\)

Vì \(4x^2-4x+9=\left(2x-1\right)^2+8>0\)( Với mọi x )

Nên \(\sqrt{4x^2-4x+9}=3\)

\(4x^2-4x+9=9\)

\(4x^2-4x=0\)

\(4x\left(x-1\right)=0\)

\(\left[{}\begin{matrix}4x=0\\x-1=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)là nghiệm

Quân Nguyễn Anh
Xem chi tiết
Mr Lazy
9 tháng 8 2015 lúc 21:24

\(a\text{) }pt\Leftrightarrow\left(y^2+2y+1\right)+\left[\left(2^x\right)^2-2.2^x+1\right]=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

\(\Leftrightarrow y+1=0\text{ và }2^x-1=0\)

\(\Leftrightarrow y=-1\text{ và }x=0\)

\(b\text{) }pt\Leftrightarrow\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow x+y=0\text{ và }x-1=0\text{ và }y+1=0\)

\(\Leftrightarrow x=1\text{ và }y=-1\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 2 2019 lúc 13:51

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 9 2019 lúc 15:39

Đáp án A

Ta có, giả thiết  log x 2 + y 2 + 3 2 x + 2 y + 5 ≥ x 2 + y 2 + 3 ≤ 2 x + 2 y + 5 ⇔ x - 1 2 + y - 1 2 ≤ 4 là miền trong đường tròn tâm I(1;1) bán kính  R 1 = 2

Và x 2 + y 2 + 4 x + 6 y + 13 - m = 0 ⇔ x + 2 2 + y + 3 2 = m  là đường tròn tâm I(-2;-3); R 2 = m  

Khi đó, yêu cầu bài toán ⇔ R 1 + R 2 = I 1 I 2 ⇔ m + 2 = 5 ⇔ m = 9

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 8 2019 lúc 13:19