CMR:ko tồn tại số nguyên a thỏa mãn ( 2017 mũ 2017+1) chia hết a3+11a
nhờ các bạn giải giúp mình này mk sẽ k cho
Tìm số tự nhiên n nhỏ nhất để tồn tại dãy số nguyên a1,a2,a3,a4,a5,a6,a7,...,a thỏa mãn a1+a2+a3+...+an=2017=a1*a2*a3*...*an
Chứng minh rằng không tồn tại số nguyên a thỏa mãn \(\left(2017^{2017}+1\right)⋮a^3+11a\)
\(a^3+11a=a\left(a^2+11\right)\)
Nếu \(a=3k+1\Rightarrow a^2+11=9k^2+6k+12⋮3\)
Nếu \(a=3k+2\Rightarrow a^2+11=9k^2+12k+15⋮3\)
\(\Rightarrow\left(a^3+11a\right)⋮3\) \(\forall a\in Z\) (1)
Mặt khác ta có:
\(2017\equiv1\left(mod3\right)\Rightarrow2017^{2017}\equiv1\left(mod3\right)\)
\(\Rightarrow\left(2017^{2017}+1\right)\equiv2\left(mod3\right)\)
\(\Rightarrow\left(2017^{2017}+1\right)⋮̸3\) (2)
Từ (1), (2) \(\Rightarrow\left(2017^{2017}+1\right)⋮̸\left(a^3+11a\right)\) \(\forall a\in Z\)
Cmr Không tồn tại số nguyên x nào thỏa mãn 20172016+1 chia hết cho x3+5x . Mình cảm ơn mọi người rất nhìu ạ <3 <3 <3
Cho đa thức f(x)=x^2+ax+b với a ,b là các số nguyên .CMR tồn tại 1 số nguyên k thỏa mãn f(k)=f(2017).f(2018)
tồn tại hay ko số nguyên x;y thỏa mãn : \(2016x^{2017}+2017y^{2018}=2019\)
+, Nếu x = 0 hoặc x = 1 ; y = 0 hoặc y = 1 thay vào 2016x2017 + 2017y2018 = 2019 thì 2016.02017 + 2017.02018 = 4033 ( Loại )
+, Nếu x,y \(\ge\)2 thay vào 2016 . 22017 + 2017 . y 2018 = 2019 ( Vô lí , loại )
Do đó không tồn tại 2 số nguyên x;y thỏa mãn điều kiện bài toán
Vậy không tồn tại ......
Hok tốt
mình xin nhắc nhẹ bạn là nguyên chứ ko phải nguyên dương nên x^2017 có thể âm nhé
Nếu là số nguyên thì cậu cứ thử như vậy thì cũng có trường hợp nào thỏa mãn đề bài .
Hok tốt
Tồn tại hay không số nguyên n thỏa mãn :
n3 + 2015n = 20172017+1
mong mọi người giúp mik Thanks
cho 2017 số tự nhiên bất kì.CMR trong 2 số đẫ cho sẽ tồn tại 1 số chia hết cho 2017 hoặc 1 số có tổng chia hết cho 2017
1)cmr nếu x;y;z là số nguyên dương thỏa mãn :\(x^2+y^2=z^2\)thì xy chia hết cho 12
2)cho các số a,b,c,d thỏa mãn a+b=c+d và \(a^2+b^2=c^2+d^2\).cmr \(a^{2017}+b^{2017}=c^{2017}+d^{2017}\)
1/ Chứng minh nó chia hết cho 3:
Nếu cả x,y đều không chia hết cho 3 thì x2, y2 chia cho 3 dư 1.
\(\Rightarrow z^2=x^2+y^2\) chia cho 3 dư 2. Mà không có số chính phương chia 3 dư 2 nên ít nhất x, y chia hết cho 3.
\(\Rightarrow xy⋮3\)
Chứng minh chia hết cho 4.
Nếu cả x, y đều chẵn thì \(xy⋮4\)
Nếu trong x, y có 1 số lẻ (giả sử là x) thì z là số lẻ
\(\Rightarrow x=2k+1;y=2m;z=2n+1\)
\(\Rightarrow4m^2=4n^2+4n+1-4k^2-4k-1=4\left(n^2+n-k^2-k\right)\)
\(\Rightarrow m^2=\left(n^2+n-k^2-k\right)\)
\(\Rightarrow m⋮2\)
\(\Rightarrow y⋮4\)
\(\Rightarrow xy⋮4\)
Với x, y đều lẻ nên z chẵn
\(\Rightarrow x^2=4m+1;y^2=4n+1;z^2=4p\)
\(\Rightarrow\)Không tồn tại x, y, z nguyên thỏa cái này
Vậy \(xy⋮4\)
Từ chứng minh trên
\(\Rightarrow xy⋮12\)
2/ \(a+b=c+d\)
\(\Leftrightarrow\left(a+b\right)^2=\left(c+d\right)^2\)
\(\Leftrightarrow2ab=2cd\)
\(\Leftrightarrow-2ab=-2cd\)
\(\Leftrightarrow\left(a-b\right)^2=\left(c-d\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=c-d\\a-b=d-c\end{cases}}\)
Kết hợp với \(a+b=c+d\)
\(\Leftrightarrow\orbr{\begin{cases}a=c\\a=d\end{cases}}\)
\(\RightarrowĐPCM\)