Cho\(\Delta\) ABC vuông ở A; AB= 6cm, AC= 8cm. Vẽ đường cao AH
a, Tính BC
b, Chứng minh: \(\Delta\) ABC đồng dạng với \(\Delta\) HBA
c, Chứng minh: AB\(^2\) = BD. BC. Tính HB, HC
d, Vẽ phân giác AD của\(\widehat{BAC}\) (D\(\in\) BC). Tính DB, AD
Cho\(\Delta ABC\)vuông ở A có các cạnh a, b, c. Đường trong (O) nội tiếp tam \(\Delta ABC\)tiếp xúc BC, CA, AB ở M, N, P. Hỏi tứ giác ANOP là hình gì và chứng minh\(\Delta ABC=MB.MC\)
Cho \(\Delta ABC\)vuông ở A. Trên tia đối của tia AC lấy điểm D sao cho AD=AC
a) Chứng minh \(\Delta ABC=\Delta ABD\)
b) Trên tia đối của tia AB lấy điểm M. Chứng minh \(\Delta MBD=\Delta MBC\)
Cho \(\Delta ABC\)vuông tại A, AB = 9cm, AC = 12cm. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ đường thẳng qua D vuông góc với BC, đường thẳng này cắt AC ở E và cắt AB ở K
a) Tính BC
b) Chứng minh \(\Delta ABE=\Delta DBE\)và suy ra BE là tia phân giác \(\widehat{ABC}\)
c) Kẻ đường thẳng qua A vuông góc với BC tại H. Đường thẳng này cắt BE ở M. Chứng minh \(\Delta AME\)cân
a) Do tam giác ABC vuông tại A
=> Theo định lý py-ta-go ta có
BC^2=AB^2+AC^2
=>BC=\(\sqrt{AB^2+AC^2}\)= \(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15
Vậy cạnh BC dài 15 cm
b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có
BE là cạnh chung
AB=BD(Giả thiết)
=>Tam giác ABE=Tam giác DBE(CGV-CH)
GT | △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm D BC : BD = BA. DK ⊥ BC (K AB , DK ∩ AC = { E } AH ⊥ BC , AH ∩ BE = { M } |
KL | a, BC = ? b, △ABE = △DBE ; BE là phân giác ABC c, △AME cân |
Bài giải:
a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)
b, Xét △ABE vuông tại A và △DBE vuông tại D
Có: AB = BD (gt)
BE là cạnh chung
=> △ABE = △DBE (ch-cgv)
=> ABE = DBE (2 góc tương ứng)
Mà BE nằm giữa BA, BD
=> BE là phân giác ABD
Hay BE là phân giác ABC
c, Vì △ABE = △DBE (cmt)
=> AEB = DEB (2 góc tương ứng)
Vì DK ⊥ BC (gt)
AH ⊥ BC (gt)
=> DK // AH (từ vuông góc đến song song)
=> AME = MED (2 góc so le trong)
Mà MED = MEA (cmt)
=> AME = MEA
=> △AME cân
Cho \(\Delta ABC\) vuông tại \(A\), \(AH\) là đường cao
\(a\)) Chứng minh \(\Delta HBA\) đồng dạng \(\Delta ABC\)
\(b\)) Chứng minh \(\Delta AH^2=BH.HC\)
a)xét ΔABC và ΔHBA ta có
\(\widehat{BAH}=\widehat{BHA}=90^o\)
\(\widehat{B}chung\)
=>ΔABC ∼ ΔHBA(g.g)(1)
b)xét ΔABC và ΔAHC ta có
\(\widehat{BAC}=\widehat{AHC}=90^o\)
\(\widehat{B}chung\)
->ΔABC ∼ ΔAHC(g.g)(2)
từ (1) và (2)=>ΔHBA và ΔAHC
->\(\dfrac{AH}{BH}=\dfrac{HC}{AH}\)
=>\(AH^2=BH.HC\)
Cho \(\Delta\)ABC đều. Ở miền ngoài của tam giác dựng \(\Delta\)BAD vuông cân đỉnh A và \(\Delta\)CAE vuông cân đỉnh A.
a) Tính góc DBC
b) CM: BE=DC
Cho \(\Delta\)ABC vuông cân tại A. Trên các cạnh góc vuông AB, AC, lấy điểm D và E sao cho AD = AE. Qua điểm D vẽ đường thẳng vuông góc BE cắt BC ở K. Qua điểm A vẽ đường thẳng vuông góc BE cắt BC ở H. Gọi M là giao điểm của DK và AC
a. C/m : \(\Delta\)BAE = \(\Delta\)CAD
b. \(\Delta\)MDC cân
c. HK = HC
1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)
a. So sánh IN và IP
b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.
2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.
3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)
a. CM: CD>AB
b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH
4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?
5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR
a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông
b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông
c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông
d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông
Cho \(\Delta\) ABC vuông cân tại A, ở phía ngoài tam giác vẽ \(\Delta\) BCD vuông cân tại B. Tứ giác ABCD là hình gì?
Tứ giác ABCD là hình thang vuông
T nha
Ai T mik mik T lại
Cho\(\Delta ABC\)vuông ở A có \(\frac{AB}{AC}=\frac{8}{15}\)và BC=51cm
a.Tính AB,AC
b.Tính diện tích \(\Delta ABC\)
Bài giải: Ta có: AB/AC = 8/15 => AB/8 = AC/15
Áp dụng định lí Pi-ta-go vào t/giác ABC , ta có:
BC2 = AB2 + AC2
=> 512 = AB2 + AC2
=> 2601 = AB2 + AC2
Áp dụng t/c của dãy tỉ số bằng nhau
Từ \(\frac{AB}{8}=\frac{AC}{15}\)=> \(\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{2601}{289}=9\)
=> \(\hept{\begin{cases}\frac{AB^2}{64}=9\\\frac{AC^2}{225}=9\end{cases}}\)=> \(\hept{\begin{cases}AB^2=9.64=576\\AC^2=9.225=2025\end{cases}}\)=> \(\hept{\begin{cases}AB=24\\AC=45\end{cases}}\)
Vậy ...
b) tự lm
\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB}{8}=\frac{AC}{15}\)
\(\Leftrightarrow\left(\frac{AB}{8}\right)^2=\left(\frac{AC}{15}\right)^2=\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{BC^2}{289}=\frac{51^2}{289}=9\)
\(\Rightarrow+)\frac{AB^2}{64}=9\Rightarrow AB=24\left(cm\right)\)
\(+)\frac{AC^2}{225}=9\Rightarrow25\left(cm\right)\)