Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phạm thị tít
Xem chi tiết
phuc phuc
Xem chi tiết
nguyễn đình thành
Xem chi tiết
alibaba nguyễn
18 tháng 10 2016 lúc 8:37

Với n chẵn thì tổng đó là hợp số vì chia hết cho 2

Với n lẻ thì n = 2k + 1 thì ta có

n4 + 42k+1 = (n2 + 22k+1)2 - n2.22k+2 = (n2 + 22k+1 + n.2k+1)(n+ 22k+1 - n.2k+1)

Chỉ cần chứng minh cả 2 cái đó lớn hơn 1 là được

Ta có n+ 22k+1\(\ge\)\(2.n.2^{\frac{2k+1}{2}}=n.2^{k+1}\)

Vì n lẻ và > 1 nên n+ 22k+1 - n.2k+1 > 1

Vậy số đó là hợp số

Hoàng hôn  ( Cool Team )
20 tháng 9 2019 lúc 21:47

Với n chẵn thì tổng đó là hợp số vì chia hết cho 2

Với n lẻ thì n = 2k + 1 thì ta có

n4 + 42k+1 = (n2 + 22k+1)2 - n2.22k+2 = (n2 + 22k+1 + n.2k+1)(n2 + 22k+1 - n.2k+1)

Chỉ cần chứng minh cả 2 cái đó lớn hơn 1 là được

Ta có n2 + 22k+1\ge≥2.n.2^{\frac{2k+1}{2}}=n.2^{k+1}2.n.222k+1​=n.2k+1

Vì n lẻ và > 1 nên n2 + 22k+1 - n.2k+1 > 1

Vậy số đó là hợp số

nguyễn thị ngọc hà
Xem chi tiết
LovE _ Khánh Ly_ LovE
20 tháng 7 2017 lúc 20:59

Nếu nn chẵn thì cái tổng chia hết cho 2

Nếu nn lẻ thì

Phân tích nhân tử

Ta có n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)

Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được

Tức là ta chứng minh n2+2n−n.2n+12≥1n2+2n−n.2n+12≥1

Tương đương với n2+2n+1−2n.2n+12+n2≥2n2+2n+1−2n.2n+12+n2≥2 ( nhân 2 cho 2 vế )

BĐT <=>(n−2n+12)2+n2≥2<=>(n−2n+12)2+n2≥2 đúng với nn lẻ và n≥3n≥3 

Vậy, ta có điều phải chứng minh

Thanh Bách
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
18 tháng 7 2017 lúc 19:40

Vì n là số tự nhiên lớn hơn 1 nên sảy ra hai trường hợp

Th1: n là số chắn  => n4 + 4n  là , hợp số.

Th2: n số lẻ  => n = 2k + 1

Thì n+ 4n  = n+ 42k + 1 = (n2 + 22k + 1)2 - n2.22k + 2 = (n2 + 22k + 1 + n.2k + 1 )  (n2 + 22k + 1 - n.2k + 1 

Ta có : n2 + 22k + 1 \(\ge2.n.2\frac{2k+1}{2}=n.2^{k+1}\)

Mà n là số lẻ và lờn hơn 1 nên n2 + 22k + 1 - n.2k + 1 > 1

Vậy n4 + 4n là hợp số 

OoO_Nhok_Lạnh_Lùng_OoO
20 tháng 7 2017 lúc 13:41

Có 2 trường hợp:

Th 1: \(n\)chẵn suy ra đương nhiên \(n^4+n^4\)là hợp số 

Th 2: \(n\)lẻ suy ra \(n=2k+1\)

Suy ra:

\(n^4+n^4=n^4+n^{2n}=n^4+2.2^n+2^{2n}-2.2^n=\left(n^2+2^n\right)^2-2.2^{2k+1}=\left(n^2+2^n\right)^2-\left(2^k+1\right)^2\)

\(=\left(n^2+2^n-2^{k+1}\right)\left(n^2+2^n+2^{k+1}\right)\)

Suy ra là tích của 2 số nên nó là hợp số
 

Hoàng Phúc
20 tháng 7 2017 lúc 20:15

toàn copy mà bày đặt "=>" với "đương nhiên"

Potter Harry
Xem chi tiết
Phan Thi Thuy linh
11 tháng 4 2017 lúc 23:01

Th1: n chan =>n^4+4n la, hop so. 

Th2:n le => n=2k+1

=>n ^4+4n =n^4+2^2n+2n-2.2^n

=(n^2+2^n)^2 -2.2^k+1=(n^2+2^n)^2

=(2^k+1)^2=(n^2+2^n-2^k+1)(n^2+2^n+2^k+1)

=>h 2 so tren LA hop so

Luân Đặng
Xem chi tiết
Kudo Shinichi
21 tháng 2 2020 lúc 16:01

n là số tự nhiên lớn hơn 1 nên n có dạng \(n=2k\) hoặc \(n=2k+1\) với k là
số tự nhiên lớn hơn 0.

- Với \(n=2k\), ta có \(n^4+4^n=\left(2k\right)^4+4^{2k}\) lớn hơn 2 và chia hết cho 2. Do đó \(n^4+4^n\)là hợp số 

- Với n = 2k+1 ta có :
\(n^4+4^n=n^4+4^{2k}.4=n^4+\left(2.4^k\right)^2=\left(n^2+2.4^k\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2.4^k-2.n.2^k\right)\left(n^2+2.4^k+2.n.2^k\right)\)

\(=\left[\left(n-2^k\right)^2+4^k\right]\left[\left(n+2^k\right)^2+4^k\right]\)

Mỗi thừa số đều lớn hơn hoặc bằng 2. Vậy n4 + 4n là hợp sô

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
Thoa Trần Thị
Xem chi tiết
Phan Tran Hong Anh
Xem chi tiết
Võ Đông Anh Tuấn
31 tháng 12 2015 lúc 20:44

m^2-n^2=(m+n)(m-n) 
...Nhưng vì m^2-n^2 là số nguyên tố nên trong 2 thừa số, thừa số nhỏ hơn phải bằng 1, tức m-n=1.Vậy m và n là 2 số tự nhiên liên tiếp 

cho tich