Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Anh Thư
Xem chi tiết
Akai Haruma
4 tháng 3 2023 lúc 23:02

Lời giải:
Ta có:
$E=\frac{5-3x}{4x-8}=\frac{1}{4}.\frac{5-3x}{x-2}=\frac{1}{4}(\frac{1}{2-x}-3)$

Để $E$ nhỏ nhất thì $\frac{1}{2-x}$ nhỏ nhất. 

Điều này xảy ra khi $2-x$ là số âm lớn nhất. 

Mà $x\in\mathbb{Z}$ nên $2-x\in\mathbb{Z}$

$\Rightarrow 2-x$ âm lớn nhất bằng $-1$

Khi đó, E nhỏ nhất bằng $\frac{1}{4}(-1-3)=-1$

đoàn hữu trường
Xem chi tiết
Tinas
Xem chi tiết
Bảo Nguyễn
6 tháng 4 2022 lúc 21:17

ta có \(\dfrac{5-3x}{4x-8}=\dfrac{-\dfrac{3}{4}\left(4x-8\right)-1}{4x-8}=-\dfrac{3}{4}-\dfrac{1}{4x-8}\)

x ∈ Z, x ≠ 2 nên 4x-8≠0

Mà \(\dfrac{1}{4x-8}< 1\Leftrightarrow-\dfrac{1}{4x-8}>-1\)

\(\Rightarrow E=-\dfrac{3}{4}-1=-\dfrac{7}{4}\)

 

ánh trăng nữ tước
Xem chi tiết
Quốc Việt Nguyễn
Xem chi tiết

Ta có: \(E=\frac{5-3x}{4x-8}\)

\(=\frac{-3x+5}{4x-8}\)

\(=\frac14\cdot\frac{-12x+20}{4x-8}=\frac14\left(\frac{-12x+24-4}{4x-8}\right)=\frac14\left(-3-\frac{4}{4x-8}\right)\)

\(=\frac14\left(-3-\frac{1}{x-2}\right)\)

Để E có giá trị nhỏ nhất thì \(-3-\frac{1}{x-2}\) nhỏ nhất

=>\(-\frac{1}{x-2}\) nhỏ nhất

=>\(\frac{1}{x-2}\) lớn nhất

=>x-2=1

=>x=3

=>\(E_{\max}=\frac14\left(-3-\frac{1}{3-2}\right)=\frac14\left(-3-\frac11\right)=\frac14\cdot\left(-4\right)=-1\)

Lê Hào 7A4
Xem chi tiết
Athena
Xem chi tiết
Đinh Phương Linh
16 tháng 4 2021 lúc 21:58

E=\(\dfrac{5-3x}{4x-8}=\dfrac{-3\left(x-2\right)-1}{4\left(x-2\right)}=\dfrac{-3}{4}-\dfrac{1}{4x-8}\)nhỏ nhất ⇔\(\dfrac{1}{4x-8}\) lớn nhất

⇔4x-8 nhỏ nhất ⇔4x-8=1(vì mẫu lớn hơn 0)

⇔x=\(\dfrac{9}{4}\) 

Vậy GTNN của E=-\(\dfrac{7}{4}\)khi x=\(\dfrac{9}{4}\)

nguyên quang huy
Xem chi tiết
Nguyễn Thiên Ngân
Xem chi tiết
Trần Thanh Phương
14 tháng 10 2018 lúc 10:09

Câu 1 :

\(E=4x^2+y^2-4x-2y+3\)

\(E=\left(2x\right)^2-2\cdot2x\cdot1+1^2+y^2-2\cdot y\cdot1+1^2+1\)

\(E=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)

Câu 2 :

\(G=x^2+2y^2+2xy-2y\)

\(G=x^2+2xy+y^2+y^2-2.y\cdot1+1^2-1\)

\(G=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

Nguyễn Thiên Ngân
14 tháng 10 2018 lúc 10:15

Còn câu F bạn ơi. Giúp Gk vs

ST
14 tháng 10 2018 lúc 10:21

\(F=\frac{3}{2x^2+x+1}=\frac{3}{2\left(x^2+\frac{x}{2}+\frac{1}{2}\right)}=\frac{3}{2\left(x^2+2x\cdot\frac{1}{4}+\frac{1}{16}\right)+\frac{7}{8}}=\frac{3}{2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}}\)

Vi \(2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}\ge8\)

\(\Rightarrow\frac{1}{2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}}\le\frac{1}{\frac{7}{8}}\Rightarrow F=\frac{3}{2\left(x+\frac{1}{4}\right)^2+\frac{7}{8}}\le\frac{3}{\frac{7}{8}}=\frac{24}{7}\)

Dấu "=" xảy ra <=>x+1/4=0<=>x=-1/4