Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyenthithuytien
Xem chi tiết
阮草~๖ۣۜDαɾƙ
25 tháng 10 2019 lúc 19:30

\(A=x^2+4x+100\)

\(A=x^2+2.x.2+2^2+96\)

\(A=\left(x+2\right)^2+96\)

           \(\left(x+2\right)^2+96\le0\)

           \(\left(x+2\right)^2+96\le96\)

    \(\Leftrightarrow A\le96\)

\(A_{min}\Leftrightarrow A=10\)

Dấu "=" xảy ra : \(\left(x+2\right)^20\)

                             \(x+2=0\)

                             \(x=-2\)

     

Khách vãng lai đã xóa
阮草~๖ۣۜDαɾƙ
25 tháng 10 2019 lúc 19:32

Thay hộ mik cái dấu \(\le\)thành dấu \(\ge\)vs ak

Khách vãng lai đã xóa

Bài làm

A = x2 + 4x + 100

A = ( x2 + 2 . x . 2 + 4 + 96 )

A = ( x2 + 2 . x . 2 + 22 ) + 96

A = ( x + 2 )2 + 96 > 96 V x

Dấu " = " xảy ra <=> ( x + 2 )2 = 0

                                    x + 2    = 0

                                    x          = 0 - 2

                                    x          = -2

Vậy AMin = 96 khi x = -2

# Học tốt #

Khách vãng lai đã xóa
nguyen my chi
Xem chi tiết
quynh tong ngoc
7 tháng 7 2017 lúc 20:12

1,A=(x2-6x+9)+2

=(x-3)2+2

ta thấy (x-3)2>=0 với mọi x

=>(x-3)2+2>=2 với mọi x

hay A>=2

dấu "="xảy ra x-3=0<=>x=3

vậy MinA=2 khi x=3

ý b sai đầu bài bạn nhé

C=-(x2-5x)

=-(x2-5x+25/4)+25/4

=-(x-5/2)2+25/4

ta thấy -(x-5/2)2<=0 với mọi x

=>-(x-5/2)2+25/4 <=25/4 với mọi x

hay C<=25/4

dấu "=" xảy ra khi x-5/2=0<=>x=5/2

vậy MaxC=25/4 khi x=5/2

k mk nha

Sarah
7 tháng 7 2017 lúc 20:25

Ta có : A = x2 - 6x + 11

<=> A = x2 - 6x + 9 + 2 

<=> A = (x - 3)2 + 2

Mà (x - 3)2 \(\ge0\forall x\)

Nên A =  (x - 3)2 + 2 \(\ge2\forall x\)

Vậy Amin = 2 , dấu "=" xảy ra khi và chỉ khi x = 3

Đen đủi mất cái nik
7 tháng 7 2017 lúc 20:33

1) A=x2-6x+9+2

=(x-3)2+2

vì (x-3)2>=0

=> (x-3)2+2>=2

Dấu "=" xảy ra khi

x-3=0. Vậy MinA=2 khi và chỉ khi x=3

2)HÌnh như câu B là 2x2 chứ bạn

Nếu là 2x2 thì làm như sau nhé:

B=2(x2+5x-1/2)

=2(x2+2.x.5/2 +25/4-27/4)

=2(x+5/2)2-27/2

Vì 2(x+5/2)2>=0

=> 2(x+5/2)2-27/2>=(-27/2)

Dấu bằng xảy ra khi 

x+5/2=0

=> x=-5/2

KL:

3)C=5x-x2

= (5/2)2-(x2-2x.5/2+25/4)

=(5/2)2-(x-5/2)2

=> 25/4-(x-5/2)2<=25/4

Dấu bằng xảy ra khi

x=5/2

KL

(dấu >= là dấu lớn hơn hoặc bằng còn <= là dấu bé hơn hoặc bằng)

Đào Trọng Uy Vũ
Xem chi tiết
Edogawa Conan
13 tháng 7 2020 lúc 16:49

a) A = 5x2 - 20x + 2020 = 5(x2 - 4x + 4) + 2000 = 5(x - 2)2 + 2000 \(\ge\)2000 \(\forall\)x

Dấu "=" xảy ra <=> x  - 2 = 0 <=> x = 2

Vậy MinA = 2000 khi x = 2+

b) B = -3x2 - 6x + 15 = -3(x2 + 2x + 1) + 18 = -3(x + 1)2 + 18 \(\le\)18 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1

Vậy MaxB = 18 khi x = -1

c) C = 9x2 + 2x + 7 = (9x2 + 2x + 1/9) + 62/9 = (3x  + 1/3)2  + 62/9 \(\ge\)62/9 \(\forall\)x

Dấu "=" xảy ra <=> 3x + 1/3 = 0 <=> x  = -1/9

Vậy MinC = 62/9 khi x = -1/9

d) D = 16 - 2x2 - 8x = -2(x2 + 4x + 4) + 24 = -2(x + 2)2 + 24 \(\le\) 24 \(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy MaxD = 24 khi x = -2

Khách vãng lai đã xóa
Quỳnh Trang Vũ
Xem chi tiết
Lấp La Lấp Lánh
12 tháng 9 2021 lúc 13:04

a) \(A=x^2+3x+4=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

\(minA=\dfrac{7}{4}\Leftrightarrow x=-\dfrac{3}{2}\)

b) \(B=2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)

\(minB=\dfrac{7}{8}\Leftrightarrow x=\dfrac{1}{4}\)

c) \(C=5x^2+2x-3=5\left(x+\dfrac{1}{5}\right)^2-\dfrac{16}{5}\ge-\dfrac{16}{5}\)

\(minC=-\dfrac{16}{5}\Leftrightarrow x=-\dfrac{1}{5}\)

d) \(D=4x^2+4x-24=\left(2x+1\right)^2-25\ge-25\)

\(minD=-25\Leftrightarrow x=-\dfrac{1}{2}\)

e) \(E=x^2+6x-11=\left(x+3\right)^2-20\ge-20\)

\(minE=-20\Leftrightarrow x=-3\)

f) \(G=\dfrac{1}{4}x^2+x-\dfrac{1}{3}=\left(\dfrac{1}{2}x+1\right)^2-\dfrac{4}{3}\ge-\dfrac{4}{3}\)

\(minG=-\dfrac{4}{3}\Leftrightarrow x=-2\)

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 13:01

a: Ta có: \(A=x^2+3x+4\)

\(=x^2+2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{7}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)

d: Ta có: \(D=4x^2+4x-24\)

\(=4x^2+4x+1-25\)

\(=\left(2x+1\right)^2-25\ge-25\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

e: ta có: \(E=x^2+6x-11\)

\(=x^2+6x+9-20\)

\(=\left(x+3\right)^2-20\ge-20\forall x\)

Dấu '=' xảy ra khi x=-3

Quỳnh Trang Vũ
12 tháng 9 2021 lúc 15:59

vâng ạ

 

Shinnôsuke
Xem chi tiết
Phan Hoàng Quốc Khánh
Xem chi tiết
Hà Ngọc Điệp
20 tháng 4 2019 lúc 20:02

Để A lớn nhất thì tử phải nhỏ nhất hay \(x^2+3x+2\) nhỏ nhất

\(x^2+3x+2=x^2+2\cdot\frac{3}{2}+\frac{9}{4}+2-\frac{9}{4}\)

                            \(=\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Dấu "=" xảy ra khi\(x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)

Min \(x^2+3x+2=-\frac{1}{4}\) khi x=-3/2

Vậy 

\(MaxA=\frac{2}{-\frac{1}{4}}=2\cdot\left(-4\right)=-8\)

Thi Thi
Xem chi tiết
Minh Triều
24 tháng 5 2015 lúc 12:32

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1

你混過 vulnerable 他 難...
Xem chi tiết
Trần Thanh Phương
30 tháng 10 2018 lúc 15:05

Bài 1 :

a) \(A=x^2-6x+11\)

\(A=x^2-2\cdot x\cdot3+3^2+2\)

\(A=\left(x-3\right)^2+2\ge2\forall x\)

Dấu "=' xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

b) \(B=2x^2+10x-1\)

\(B=2\left(x^2+5x-\frac{1}{2}\right)\)

\(B=2\left[x^2+2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{27}{4}\right]\)

\(B=2\left[\left(x+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)

\(B=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=\frac{-5}{2}\)

c) \(C=5x-x^2\)

\(C=-\left(x^2-5x\right)\)

\(C=-\left[x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\left(\frac{5}{2}\right)^2\right]\)

\(C=-\left[\left(x-\frac{5}{2}\right)^2-\frac{25}{4}\right]\)

\(C=\frac{25}{4}-\left(x-\frac{5}{2}\right)^2\le\frac{25}{4}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Bài 2 :

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[x+\left(y+z\right)\right]^3-x^3-y^3-z^3\)

\(=x^3+3x^2\left(y+z\right)+3x\left(y+z\right)^2+\left(y+z\right)^3-x^3-y^3-z^3\)

\(=3x^2\left(y+z\right)+3x\left(y+z\right)^2+y^3+3y^2z+3yz^2+z^3-y^3-z^3\)

\(=3x^2\left(y+z\right)+3x\left(y+z\right)^2+3yz\left(y+z\right)\)

\(=3\left(y+z\right)\left[x^2+x\left(y+z\right)+yz\right]\)

\(=3\left(y+z\right)\left(x^2+xy+xz+yz\right)\)

\(=3\left(y+z\right)\left[x\left(x+y\right)+z\left(x+y\right)\right]\)

\(=3\left(y+z\right)\left(x+y\right)\left(x+z\right)\)

Kakashi
30 tháng 10 2018 lúc 19:53

a) A=x2-6x+11

=(x2-6x+9)+2

=(x-3)2+2

Ta có  \(\left(x-3\right)^2\le0vớim\text{ọi}x\)

=>\(\left(x-3\right)^2+2\le2v\text{ới}m\text{ọi}x\)

Dấu "="xảy ra khi : x-3=0

=>x=3

Vậy x có GTNN là 2 tại x=3

Hà Lê
Xem chi tiết
Lê Ngô
6 tháng 2 2016 lúc 7:42

bạn ơi,cần đáp án thôi hay là cả cách giải vậy?mình biết nhưg nó mất thời gian lắm...

Hà Lê
6 tháng 2 2016 lúc 7:49

Cả cách giải nữa bạn nhé :) cảm ơn bạn nhiều :) giúp mình tí nha 

Lê Ngô
6 tháng 2 2016 lúc 8:18

 vì |4.3-x| >=(lớn hơn hoặc bằng nhé) 0

suy ra(bạn dùg dấu mũi tên đi) 3,7+|4.3-x| >= 3,7

suy ra gtnn của P là 3,7 khi |4.3-x|=0

                                 suy ra x=4.3=12