Cho tam giác ABC cân tại A . kẻ AH vông góc với BC ( H thuộc BC ) . chứng minh rằng : HB=HC ( giúp mình với )
Cho tam giác ABC cân tại A . Kẻ AH vuông tại góc với BC ( H thuộc BC )
Chứng minh HB = HC
tham khảo
a/ xét 2 tam giác vuông ABH và ACH,có:
AB=AC(gt),AH chung =>tam giác vuông ABH=tam giác vuông ACH
=>HB=HC(t/ứng
Xét 2 tam giác vuông ABH và ACH,có: AB=AC(gt),AH chung =>tam giác vuông ABH=tam giác vuông ACH =>HB=HC
Vì tg ABC cân tại A.
=>AB=AC.
Xét tg AHC và tg AHB, có:
AH chung.
góc AHB= góc AHC(=90o)
AB=AC(cmt)
=>tg AHB= tgAHC(ch-cgv)
=>HB=HC(2 cạnh tương ứng)
cho tam giác cân ABC cân tại A. Kẻ AH vuông góc với BC (H thuộc BC). Chứng minh rằng:
a) HB = HC
b) góc BAH = góc CAH
hình bạn tự vẽ
a/ xét 2 tam giác vuông ABH và ACH,có:
AB=AC(gt),AH chung =>tam giác vuông ABH=tam giác vuông ACH
=>HB=HC(t/ứng)
b/ Vì tam giác vuông BAH=tam giác vuông ACH(cmt) =>\(\widehat{BAH}\)=\(\widehat{CAH}\)(t/ứng)
Cho tam giác ABC cân tại A Kẻ AH vuông góc với BC H thuộc BC a chứng minh HB = HC B Tính độ dài cạnh A2 cho biết AB = 10 cm BC = 12 cm ơ c kẻ HD vuông góc với AB D thuộc AB AC AD vuông góc với AC E thuộc AC Chứng minh tam giác hde cân D nếu cho góc Bac bằng 120 độ thì tam giác AC d e trở thành tam giác gì Vì sao
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H
a Chứng minh rằng tam giác AHB= tam giác AHC
b Chứng minh rằng HB=HC và góc BAH= góc CAH
c Kẻ HK vuông góc với AB tại K và HI vuông góc với AC tại I . Chứng minh rằng tam giác HKB = tam giác HIC
Giúp mình với mình đang cần gấp
cho tam giác ABC cân tại A , kẻ AH vuông góc với BC ( H thuộc BC)
a)chứng minh HB =HC
b)kẻ HD vuông góc với AB ( D thuộc AB) và HE vuông góc với AC ( E thuộc AC) . Chứng minh tam giác HDE cân
2.cho tam giác ABC có AB=AC=5CM, BC=8cm . Kẻ AH vuông góc với BC ( H thuộc BC ) a) chứng minh HB=HC và góc BAH = góc CAH. b) tính độ dài đoạn thẳng AH . c) kẻ HD vuông góc với AB tại D , kẻ HE vuông góc với AC tại E . chứng minh rằng tam giác HDE là tam giác cân
so sánh hd và hc
cho tam giác abc cân tại a có AB=AC=5cm, BC=8cm. kẻ AH vuông góc với BC (H thuộc BC) a) chứng minh HB=HC và góc BAH= góc CAH. b) tính độ dài AH. c) kẻ HD vươong góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H
a Chứng minh rằng tam giác AHB= tam giác AHC
b Chứng minh rằng HB=HC và góc BAH= góc CAH
c Kẻ HK vuông góc với AB tại K và HI vuông góc với AC tại I . Chứng minh rằng tam giác HKB = tam giác HIC
Giúp mình với mình đang cần gấp ạ
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H
a Chứng minh rằng tam giác AHB= tam giác AHC
b Chứng minh rằng HB=HC và góc BAH= góc CAH
c Kẻ HK vuông góc với AB tại K và HI vuông góc với AC tại I . Chứng minh rằng tam giác HKB = tam giác HIC
Giúp mình với mình đang cần gấp ạ
Bạn tự vẽ hình nhá.
a, Vì tam giác ABC cân tại A nên AB = AC và \(\widehat{ABC}=\widehat{ACB}\)
Xét tam giác AHB vuông tại H và tam giác AHC vuông tại H , có:
AB = AC (gt)
AH là cạnh chung
=> Tam giác AHB = Tam giác AHC ( cạnh huyền - cạnh góc vuông )
b, Vì Tam giác AHB = Tam giác AHC nên HB = HC ( hai cạnh tương ứng )
và \(\widehat{BAH}=\widehat{CAH}\) ( hai góc tương ứng )
c, Vì Tam giác AHB = Tam giác AHC nên \(\widehat{ABH}=\widehat{ACH}\) hay \(\widehat{KBH}=\widehat{ICH}\)
Xét tam giác HKB vuông tại K và tam giác HIC vuông tại I, có:
HB = HC ( cmt )
\(\widehat{KBH}=\widehat{ICH}\)
=> Tam giác HKB = Tam giác HIC ( cạnh huyền - góc nhọn )
cảm ơn bạn nhé
Câu 8 Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC (H BC)
a) Chứng minh HB = HC
b) Chứng minh góc BAH =góc CAH
c) Kẻ HD vuông góc với AB (D thuộc AB). Kẻ HE vuông góc với AC (E AC). Chứng minh tam giác HDE là tam giác cân
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
b: Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra: HD=HE
hay ΔHDE cân tại H