Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Shiragami Yamato
Xem chi tiết
Trần Minh Hoàng
26 tháng 10 2018 lúc 14:44

Ta có:

\(\frac{3}{5.2!}+\frac{3}{5.3!}+\frac{3}{5.4!}+...+\frac{3}{5.100!}\)

\(=\frac{3}{5}.\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{100!}\right)\)

\(< \frac{3}{5}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)

\(=\frac{3}{5}.\left(1-\frac{1}{100}\right)\)

\(< \frac{3}{5}.1=\frac{3}{5}=0,6\)

tran nguyen viet hoang
26 tháng 10 2018 lúc 14:54

bang nhau

shitbo
26 tháng 10 2018 lúc 14:54

Ta có:

3/5.2!+3/5.3!+.......+3/5.100!

=3/5(1/2!+1/3!+.......+1/100!)

< 3/5(1/1.2+1/2.3+........+1/99.100)

=3/5.(1-1/100)

<3/5=0.6

=> tổng trên<0,6

@Hacker.vn
Xem chi tiết
Phạm Thùy Dương
Xem chi tiết
Dark Wings
Xem chi tiết
Đặng Hoàng Uyên Lâm
Xem chi tiết
Đặng Anh Quế
Xem chi tiết
tống thị quỳnh
12 tháng 4 2017 lúc 22:21

có A= \(\frac{3}{5.2!}\)+\(\frac{3}{5.3!}\)+...+\(\frac{3}{5.100!}\)=\(\frac{3}{5}\)(\(\frac{1}{2!}\)+\(\frac{1}{3!}\)+....+\(\frac{1}{100!}\))

đặt vế trong ngoặc là B. Đặt \(\frac{1}{2!}\)+\(\frac{2}{3!}\)+...+\(\frac{99}{100!}\)=C ta có C=\(\frac{2-1}{2!}\)+\(\frac{3-1}{3!}\)+....+\(\frac{100-1}{100!}\)

=\(\frac{2}{2!}\)-\(\frac{1}{2!}\)+\(\frac{1}{2!}\)-\(\frac{1}{3!}\)+...+\(\frac{1}{99!}\)-\(\frac{1}{100!}\)=1-\(\frac{1}{100!}\)<1

mà \(\frac{1}{2!}\)=\(\frac{1}{2!}\);\(\frac{1}{3!}\)<\(\frac{2}{3!}\);....;\(\frac{1}{100!}\)<\(\frac{99}{100!}\)\(\Rightarrow\)B<C<1\(\Rightarrow\)B.\(\frac{3}{5}\)<1.\(\frac{3}{5}\)=\(\frac{3}{5}\)=0.6\(\Rightarrow\)A<0.6

Cũng đơn giản mà em nhớ k cho chị nha !

Phạm Phương Hân
Xem chi tiết
Trường tiểu học Yên Trun...
Xem chi tiết
TítTồ
Xem chi tiết
Phùng Minh Quân
17 tháng 3 2018 lúc 9:48

Đề còn thiếu 1 điều kiện nữa là \(n>0\)

Đặt \(A=\frac{4}{5.2!}+\frac{4}{5.3!}+\frac{4}{5.4!}+...+\frac{4}{5.n!}\) ta có : 

\(A=\frac{4}{5}\left(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\right)\)

Để \(A< 0,8\) thì \(\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}< 1\)

Đặt \(B=\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+...+\frac{1}{n!}\) ta có : 

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(B< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}+\frac{1}{n}\)

\(B< 1-\frac{1}{n}< 1\)

\(\Rightarrow\)\(B< 1\) ( đpcm ) 

Suy ra : \(A=\frac{4}{5}.B=0,8.B< 0,8\) ( vì \(B< 1\) ) 

Vậy \(\frac{4}{5.2!}+\frac{4}{5.3!}+\frac{4}{5.4!}+...+\frac{4}{5.n!}< 0,8\)

Chúc bạn học tốt ~