Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Giang
Xem chi tiết
Scarlet Blackburn
Xem chi tiết
Sun Sun
Xem chi tiết
Vongola Tsuna
17 tháng 1 2016 lúc 16:44

thấy mà đau đầu quá bn ơi 

Phương Linh
17 tháng 1 2016 lúc 16:54

nhiều quá vậy bạn 

Khải oppa
17 tháng 1 2016 lúc 17:01

Oi gioi oi! Nhun nao mat!!!!!!!!!!!

Hoàng Thị Thu Thảo
Xem chi tiết
Scarlet Blackburn
Xem chi tiết
Thân Thùy Dương
Xem chi tiết
alibaba nguyễn
12 tháng 7 2017 lúc 8:53

Theo đề bài thì ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{7a}{7b}=\frac{5c}{5d}=\frac{7a+5c}{7b+5d}=\frac{7a-5c}{7b-5d}\left(1\right)\)

Ta cần chứng minh:

\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\)

\(\Leftrightarrow\frac{7a+5c}{7a-5c}=\frac{7b+5d}{7b-5d}\)

\(\Leftrightarrow\frac{7a+5c}{7b+5d}=\frac{7a-5c}{7b-5d}\left(2\right)\)

Từ (1) và (2) ta suy ra điều phải chứng minh

Hinamori Amu
Xem chi tiết
soyeon_Tiểubàng giải
13 tháng 10 2016 lúc 20:38

Có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}\)

Đặt \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\begin{cases}a=c.k\\b=d.k\end{cases}\)

Ta có:

\(\frac{7a^2+5ac}{7a^2-5ac}=\frac{a.\left(7a+5c\right)}{a.\left(7a-5c\right)}=\frac{7.c.k+5c}{7.c.k-5c}=\frac{c.\left(7.k+5\right)}{c.\left(7.k-5\right)}=\frac{7.k+5}{7.k-5}\left(1\right)\)

\(\frac{7b^2+5bd}{7b^2-5bd}=\frac{b.\left(7b+5d\right)}{b.\left(7b-5d\right)}=\frac{7.d.k+5d}{7.d.k-5d}=\frac{d.\left(7.k+5\right)}{d.\left(7.k-5\right)}=\frac{7.k+5}{7.k-5}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{7a^2+5ac}{7a^2-5ac}=\frac{7b^2+5bd}{7b^2-5bd}\left(đpcm\right)\)

 

Trần Thị Hương Thu
Xem chi tiết
Luu Thi Lan
Xem chi tiết
ST
9 tháng 7 2018 lúc 19:40

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

a, Ta có: \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bk+b}{dk+d}\right)^2=\left[\frac{b\left(k+1\right)}{d\left(k+1\right)}\right]^2=\frac{b^2}{d^2}\left(1\right)\)

\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2k^2+b^2}{d^2k^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\left(2\right)\)

Từ (1) và (2) => \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)

b, thay vào giống a là đc