Cho a, b dương và a2014 + b2014 = a2015 + b2015 = a2016 + b2016.
Tính a2017 + b2017
cho 2017 số nguyên a a1,a2,a3,..,a2017 có tổng bằng 0 và thỏa mãn a1+a2=a3+a4=a4+a5=..=a2015+a2016=a2017+a1=1 .tìm a1,a2,a2017
TK MÌNH ĐI MỌI NGƯỜI MÌNH BỊ ÂM NÈ!
AI TK MÌNH MÌNH TK LẠI CHO!
Cho 2017 số nguyên a1;a2;....;a2016;a2017 có tổng bằng 0 thỏa mãn điều kiện: a1+a2=a3+a4=a5+a6=....=a2015+a2016=a2017+a1=1. Tìm a1;a2;a2017.
Cho dãy số a1;a2;a3;...;a2016
Cho a2^2=a1.a3
a3^2=a2.a4
...
a2015^2=a2014.a2016
CMR:
\(\left(\frac{a1+a2+a3+...+a2015}{a2+a3+a4+...+a2016}\right)^{2016}=\frac{a1}{a2016}\)
Cho các số tự nhiên a,b,c thoả mãn: a2+b2+c2=ab+bc+ca và a+b+c=3.Tính M= a2016 +b2015 +c2020
Ta có:
\(a^2+b^2+c^2=ab+bc+ca\\ \Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\\ \Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\\ \Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\ge0\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow\left(a-b\right)^2=\left(b-c\right)^2=\left(c-a\right)^2=0\\ \Leftrightarrow a=b=c\)
Lại có: \(a+b+c=3\Rightarrow a=b=c=1\)
\(\Rightarrow M=1^{2016}+1^{2015}+1^{2020}=1+1+1=3\)
Cho 2015 số nguyên: a1; a2; a3; ...; a2015 và b1; b2; b3; ...; b2015 là các hoán vị của nó. Chứng minh (â1-b1).(â2-b2).(a3-b3)...(a2015-b2015) là số chẵn
Cho dãy tỉ số bằng nhau: a1/a2=a2/a3=a3/a4=...=a2014/a2015. Cmr ta có dẳng thức:a1/a2015=(a1+a2+a3+...+a2014/a2+a3+a4+...+a2015).
Cho dãy tỉ số bằng nhau: a1/a2=a2/a3=a3/a4=...=a2014/a2015. Cmr ta có dẳng thức:a1/a2015=(a1+a2+a3+...+a2014/a2+a3+a4+...+a2015).
Cho 2015 số nguyên a1, a2,..., a2015. b1,b2,...,b2015 là cách sắp xếp theo thứ tự khác của các số a1, a2,..., a2015.
CMR: P = (a1-b1).(a2-b2)...(a2015-b2015) là 1 số nguyên chẵn
Cho day tỉ số bằng nhau a1/a2=a2/a3=a3/4=...=a2014/a2015. CMR:
a1/a2015=(a1+a2+a3+...+a2014)2014/(a2+a3+a4+...+a2015)2014
Cho dãy tỉ số bằng nhau: a1/a2 = a2/a3 = a3/a4 = ... = a2014/a2015
Chứng minh rằng a1/a2015 = (a1+a2+a3+...+a2014/a2+a3+a4+...+a2015)^2014
Bạn nào giúp mình tick cho
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a1}{a2}=\frac{a2}{a3}=....=\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\)
=>\(\frac{a1}{a2}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(1\right)\)
\(\frac{a2}{a3}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2\right)\)
...........
\(\frac{a2014}{a2015}=\frac{a1+a2+...+a2014}{a2+a3+...+a2015}\left(2014\right)\)
Nhân (1),(2),....(2014) vế với vế:
\(\frac{a_1}{a_2}.\frac{a_2}{a_3}............\frac{a_{2014}}{a_{2015}}=\frac{a_1}{a_{2015}}=\left(\frac{a_1+a_2+...+a_{2014}}{a_2+a_3+...+a_{2015}}\right)^{2014}\)
Vậy...